Using Computer Algebra Systems as
Cognitive Tools

The ACTIVEMATH group: Erica Melis, Jochen Biidenbender, Adrian
Frischauf, Georgi Goguadze, Paul Libbrecht, Carsten Ullrich
dev@activemath.org

DFKI Saarbriicken, D-66123 Saarbriicken, Germany

Abstract. We describe how Computer Algebra Systems (CASs) can be
used as cognitive tools in a learning environment. In particular, we show
how a CAS is employed in ACTIVEMATH, how different types of CAS-
exercises are designed, and how feedback can be produced with the help
of the very same CAS. We report the results of a first preliminary for-
mative evaluation of AcTIVEMATH’ CAS-exercises in a university course
and some modifications of ACTIVEMATH caused by this evaluation.

1 Introduction

The ACTIVEMATH learning environment [9] presents a variety of (interac-
tive) learning materials to the student rather than exercises or examples
only. The course materials include motivations, concepts, elaborations,
exploratory animations, worked-out examples, and exercises with feed-
back.

As its name suggests, ACTIVEMATH emphasizes the active role of the
student and leaves space for exploratory learning. This feature is greatly
supported by the integration of cognitive tools. Currently, ACTIVEMATH
integrates the Computer Algebra Systems (CASs) MAPLE and MUPAD
and a proof planner as cognitive tools. They provide the backbone for
interactive problem solving that does not need pre-defining few possible
problem solutions, and for dynamically producing local (problem solving)
feedback to the user’s actions. Furthermore, the user’s exercising perfor-
mance is used to update ACTIVEMATH’s long term user model.

The term cognitive tool was coined in [7] and generally denotes in-
struments supporting cognitive processes by extending the limits of the
human cognitive capacities, e.g., the working memory. When applied to
learning, such tools can help, e.g., to remember, to practice, to hypothe-
size, to solve a problem. In particular, when learning is difficult because
it is too complex or because several things have to be done at the same



time, these tools can help considerably. This is well-known for simulation
tools [6], dynamic geometry systems, etc.

In this paper, we mainly describe how specific interactive exercises
with CASs can be designed and report on their actual usage. To begin
with, let’s summarize why the Computer Algebra Systems can support
active learning of (mathematical) problem solving. They help the learner
a) to ezplore a problem interactively and directly experience the result of a
calculation, even a complex one; b) to focus on a particular subtask or skill
in solving a problem rather than paying all the attention to a detailed
computation; c¢) to correct misconceptions and errors and support her
by local feedback; d) to learn how to handle the cognitive tool for after-
learning usage.

In the remainder of the article, we discuss some advantages and diffi-
culties of integrating CASs into I'TSs. Section 3 concretely looks at CAS-
exercises in ACTIVEMATH. Section 4 contributes a preliminary formative
evaluation and reports our experiences with ACTIVEMATH’ CAS-exercises
in real-life mathematics lessons attended by first-year university students.

2 Computer Algebra Systems

There exist quite a number of CASs that are used for professional and for
educational purposes, e.g., MAPLE [1] or MUPAD [10]. These systems are
stand-alone and have elaborate algorithms to perform even complicated
computations. As stand-alone tools they have been used in some schools
but as far as we know there is no learning environment integrating a CAS.
Instead, existing I'TS use their specific problem solving modules such as
the physics problem solver in Andes [2].

However, the CAS facilities differ largely from those specifically de-
signed problem solvers: on the one hand, a CAS computes only one solu-
tion path and does not compute the search space for a solution as, e.g., the
physics problem solver does in Andes. A CAS does neither directly pro-
vide information evaluating the user’s input apart from correct/incorrect
and impossible inputs. On the other hand, a CAS is a very powerful
stand-alone system that can solve complex and complicated problems.
This makes it a cognitive tool that can help to solve even real-world
problems in a school lesson’s time.

For developers of I'TSs and authors the use of an existing third-party
CAS has the disadvantage that the CAS is a black-box system as opposed
to a white-box system the developers would have implemented or can
at least modify themselves. This makes enhancing the CAS with more



functionalities rather difficult. In comparison, when the developers of a
learning environment have also implemented the service system, they can
easily adapt it to suit the pedagogical and technical needs of the ITS
(which would also be possible if the system was available as open source).

In what follows we investigate the questions (1) what can be done
with such black-boxes, (2) what is the advantage for an ITS that inte-
grates a CAS, and vice versa (3) what is the advantage of not just taking
the stand-alone CAS but rather integrating it into the larger learning
environment? As for the third question, when a CAS is integrated into a
context which presents conceptual content and examples, it is possible for
the learner to see the big picture of the domain and to refer to or being
referred to knowledge that is relevant for solving an exercise such as defini-
tions, similar examples, or missing prerequisite knowledge. Moreover, such
an environment offers user-adaptivity, a feature that stand-alone CASs
are not designed to provide. For instance, ACTIVEMATH can restrict the
available features of a CAS: a student who is learning mathematical inte-
gration should not use a CAS to solve his exercises completely, but using
the CAS as a calculator for auxiliary calculation is acceptable.

3 CAS-Exercises in ACTIVEMATH

The philosophy of ACTIVEMATH suggests that the user controls her ex-
ercise activities herself and no single solution needs to be followed as long
as a correct solution results at some point. Moreover, since handling the
CAS can be one of the learning goals, the user’s input is CAS commands.

Figure 1 shows a screen shot of a CAS-exercise session. With the start
of an exercise, a console appears. It displays the text of the exercise again
such that problem and later the solution can be seen in one window.
In Figure 1 the text asks to prove an inequality. The learner performed
three calculation steps which all were correct. However, her first attempt
to finish the exercise was not successful, because the result can further be
simplified to 0 < (a+ b)? which is obviously correct because of the square
on the right side. After two more steps the learner successfully finished
this exercise and received a positive feedback.

The student can save the current dialog as a text. This allows to
quickly resume a session and to inspect a solution later. Furthermore, the
student can annotate CAS-exercises (as well as any other learning mate-
rial) with public or private notes. ACTIVEMATH also offers a scratch pad
facility, for auxiliary calculations. A CAS can be used to produce visu-
alizations. ACTIVEMATH uses these to more adequately present mathe-



Show that the following holds for any real a,b

4abe=(a+h)
> 4*a*h <= a*2 + 2*a*h + bA2

2 2
4ab<=2ab+a +b
This step is correct.

> qed
qed
No, wou are not finished with this proof yet.
> 0 <= arz - 2*a*h + bAz

2
OD<=a -2ab+h
This step is correct.

> 0 <= (a-b)n2

D<=(a-h
This step is correct.

> ged
qed
Good! You've done it right.

=] )

Fig. 1. An example CAS-session

matical concepts which have a dynamical aspect, e.g., the convergence of
a sequence or the definition of the velocity of a body.

3.1 Integration Mechanism

We have developed a framework that allows an easy integration of existing
mathematical systems within ACTIVEMATH. In this framework, the CAS
is started on the server via a console applet on the client in the browser.
A proxy handles the communication between the CAS (where the stu-
dent’s answers are evaluated), the console (to provide input/output), and
ACTIVEMATH (e.g., to update the user model).

3.2 Exercise Types

AcCTIVEMATH offers a variety of exercises in general. This includes multi-
ple choice questions, proof planning exercises, CAS-exercises, and control
questions. We experimented with two different types of CAS-exercises,
single-step exercises, where only one input is required, and multi-step
exercises, where each single step is evaluated and feedback is given. In
addition to the usual check of correctness of a step, multi-step exercise
results are evaluated with respect to the finality of the input (see Fig-
ure 1).



3.3 Local Feedback in CAS-Exercises

In AcTIVEMATH we distinguish between global and local feedback [8].
Global feedback may be given after reading, navigating, and, of course,
exercising. In the case of exercising with a CAS, the result of the exercise
session updates ACTIVEMATH’s user model, e.g., if the student fails to
solve an exercise for a certain concept, its mastery value is decreased.
Subsequently, this can trigger suggestions for learning certain content,
solving certain exercises, etc. As opposed to global feedback, local feed-
back is given during exercising and refers to the activities in the learner’s
problem solving attempts. This local feedback is what is commonly pro-
vided by most ITS [5].

In this section we analyze how the CAS integrated into ACTIVEMATH
can be employed for producing local feedback for CAS-exercises. The
philosophy of ACTIVEM ATH suggests the following: to allow for more than
a single solution, to relieve the author from the burden of foreseeing and
implementing every possible (in)correct solution step, and to exploit the
capabilites of the CAS. The idea is to use the CAS to compute whether
an input satisfies a test condition and to deliver feedback depending on
the answer. We distinguish between five classes of test conditions:

i test the equality of the input with respect to a predefined value. For
example, if the user has to find the Euler indicator of a given number,
his input will also be a number which is checked for equality against
a solution either provided by the author or calculated by the CAS.

ii check the validity of an expression in which the input is a subexpres-
sion. For example, if the correct input is supposed to be the inverse of
a given permutation, then the product of these two should be equal
to the identity permutation. Any mathematically incorrect input does
not satisfy the test condition and thus, results in a feedback stating
that this product is not equal to the identity and hence, the input is
incorrect. Such a feedback is meant to stimulate further learning by
wondering how the feedback is related to the original task.

iii test the equivalence of the input with respect to a given expression.
This leaves quite some freedom for the user’s input because it is
judged only modulo equivalence rather than equality. Here, an im-
portant case is the check for equivalence in a sequence of transforma-
tions/manipulations of formulas (e.g., equations) as shown in Figure 1.
Only the correctness but not the progress towards a goal is judged.

iv test the equivalence of the solution set corresponding to the input and
the solution set corresponding to a given formula. This method can



be used if the exercise deals with (in)equations. Theoretically, this
class is equal to class (iii). Practically however, this method helps to
overcome the cases when the CAS is not able to check for equivalence
directly.

v test whether the input is sufficiently simplified. For example the input
limit (x+2, x=2) will not be accepted as the final solution of an
exercise, even if it is correct. This term should be further simplified
to 4, which will be accepted.

In the following we elaborate on how these classes of test conditions
are used to provide several kinds of feedback. A common classification
of feedback distinguishes between Knowledge of Result, Knowledge of
Correct Result, Answer Until Correct, and Elaborated Feedback. The
CAS-exercises in ACTIVEMATH cover them by the five types of local
feedback explained in the following:

Help. Since the student inputs her calculation steps via the CAS input
syntax, a Help function explains the appropriate CAS commands for this
exercise. Help can be accessed by typing “help”. This function can also
be used to author hints for the student.

Input-Error. A common type of errors is incorrectly written input. These
input errors may have different causes: (1) incorrectly typed commands
or expressions (given the CAS language) which cannot be interpreted by
the CAS or (2) a misconception of the intended input. The first, e.g., un-
balanced brackets, could be avoided by a schematic input editor provided
with the planned intermediator described in the section ’near future’.
Errors caused by misconceptions occur, when the user’s input is syntacti-
cally correct but does not represent the right kind of mathematical object.
In this case, the CAS’ calculation of the test condition fails. If the CAS
can detect the failure, appropriate feedback can be provided.
Correct/Incorrect. If an exercise requires direct input of the solution, the
CAS can check it and inform the learner immediately about the cor-
rectness of her input. If the answer is correct, the exercise session ends.
Otherwise, the learner is invited to provide a new input. In exercises that
require several calculation steps before the final solution, every step is
evaluated and feedback about its correctness is given. The check for cor-
rectness depends on the mathematical objects which occur in the solution
steps. We use the classes described in (i) - (v). An example for (iii) is the
exercise “Please enter the power set of {1,7}” where the learner’s input
is compared to the solution {0, {1}, {7}, {1,7}}

Elaboration-on-Error. In some exercises the feedback can be more elab-
orate than simply ’correct’ or ’incorrect’. An exercise which needs a



comparison of solution sets (iv) is the following: “Solve the inequation
1 < z < 4, where = is a real number”. The correctness of the stu-
dent’s input can be checked by comparing it with the correct solution
which is z € [-2,—1] U [1,2], e.g., with the following CAS code: if
bool(solve(new,x) = solve(solution,x)) then result:=1 end_if
where new contains the learner’s input and solution is the correct so-
lution. One option for an elaborate feedback is to point the learner to
elements belonging to her solution set but not to the set of the correct
solution and vice versa.

Show-Solution. Finally, an authored solution or one automatically com-
puted by the CAS is yet another kind of feedback in CAS-exercises in Ac-
TIVEMATH. If the author provides a pre-determined solution, the learner
can access it by typing “solution” and then the exercise is considered
finished immediately. This feature can be suppressed for pedagogical rea-
sons.

4 Preliminary Empirical Evaluation

4.1 Experimental Design

The target population for ACTIVEMATH is university-level students with
different skills and mastery-levels in mathematics. Hence, to evaluate if
and how the current version of ACTIVEMATH influences the student’s ac-
tive problem solving and learning (including usability considerations), we
were planning to run a real-life study with 100 first-year students in oblig-
atory weekly sessions augmenting the lectures of an introductory calculus
course at the university of Saarland. Disappointingly, due to the unfore-
seen last-minute choice of the lecturer and administrative difficulties, we
were unable to carry out the study in a better coordination with the lec-
turer’s material and homeworks and in obligatory sessions, i.e., with as
many as 100 students and with the opportunity to test groups of stu-
dents. That’s real life... Still, at the moment we are more interested in an
evaluation with a real-life setting than in a lab experiment with ideal but
somewhat unrealistic conditions.

We had to resort to varying numbers of voluntary attendants with an
average of six students for one semester and could not include a proper
pre-test but had to rely on the student’s last school grades in mathemat-
ics. Thus, we decided to observe the attending students, to record their
questions and the human tutor’s answers to gain an initial understanding
of how and if CAS-exercises are usable and contribute to active learning.
Moreover, we had to make use of the content of a full calculus course that



is based on the rather traditional textbook [3] that was already encoded
in ACTIVEMATH and to a number of additional interactive exercises.

As a result, we conducted a preliminary formative evaluation with
the objective to successively improve ACTIVEMATH functionalities and
design. The evaluation was conducted over one semester with first-year
students of computer science. They attended the obligatory course Math-
ematics for computer scientists that covered calculus up to integration
in one dimension. The course comprised four hours lecturing per week,
homeworks, and weekly traditional obligatory exercises as well as our
additional voluntary ACTIVEMATH session once a week.

At the beginning, 29 out of 150 students registered for the voluntary
ACTIVEMATH session which was our sole empirical source. Because of the
optional nature of the ACTIVEMATH sessions the number of attendees
dropped considerably during the semester. In interviews, the students
explained that they were under time pressure and avoided any activity not
directly contributing to the homeworks or to the announced examination.

The evaluation sessions took place in computer rooms, where every
student had her own computer and each session was attended and super-
vised by a tutor who first briefly introduced the handling of ACTIVEM ATH
and later gave hints and answered their questions (all recorded).

Apart from the observations and the recording of questions and an-
swers we used the methods questionnaires and interviews. Before the ac-
tual ACTIVEM ATH sessions 29 students filled an on-line questionnaire and
at the end a second questionnaire was filled by six students only and more
interviews were conducted to compare with the student’s initial attitudes
and motivation.

4.2 Results

The first questionnaire showed a rather low average mathematics grade.
The last mathematics school grades varied from 1 (very good) to 4 (suf-
ficient), with an average of 2.75 (satisfying). All students frequently used
a computer prior to the evaluation. Former use of learning software was
restricted to vocabulary trainers in a few cases. The second question-
naire and interviews invariably showed that the student’s motivation and
attitudes towards mathematics and active learning increased.

Qualitative Observations Our observations confirmed a strong in-
crease of learning motivation. Students enjoyed using CAS-exercises, espe-
cially to explore new content. The feedback even led to little competitions



among the students in which each student wanted to solve the exercises
first.

These “competitions” can explain another unexpected observation:
the more elaborate feedback was considered less important. The students
were more interested in whether their solutions were correct or incorrect.
We assume that the need for elaborate feedback will increase when the
exercises become more difficulty and when no human feedback is available.

In fact, we noticed that the need for help by the human tutor gradually
decreased. Initially, the students had problems using ACTIVEMATH, in
particular, problems with the CAS-syntax. This was remedied by the
implementation of the help facility.

Similarly, the navigation behavior of students changed during the
semester. In the first sessions, the students traversed the curriculum in a
book-like manner (going forward or backward page-wise). After they be-
came more familiar with the system, they navigated more freely and took
advantage of the overall content presentation of ACTIVEMATH. Then,
they also used the dictionary, e.g., to search for additional exercises. Not
surprisingly, students with good mastery felt more secure about the con-
tent and, hence, used the advanced features, e.g., inspected the user model
to find out about their weaknesses, whereas weaker students were more
focused on solving exercises and did not make so much use of additional
features ACTIVEMATH offers for self-guided learning.

Technical Problems and Their Solution We identified a number
of technical problems in the realistic course setting, in particular, when
many students attended a session.

Performance. The system’s performance dramatically decreased when a
large number of students simultaneously used ACTIVEMATH. Hitherto
AcTIVEMATH was not developed with regard to efficiency, so that several
standard optimization solutions, e.g., caching of content, were not yet
implemented. As a first alleviation, we run the knowledge base now within
the same process rather than as a resource-intensive independent process.
Presentation. The presentation of mathematical formulas in the console
as well as in the ACTIVEMATH HTML pages is not at all perfect yet. This is
due to the browser-based presentation. Therefore, we are investigating a
SVG or MATHML presentation for the browser. The current CAS-console
is implemented as a rather basic java applet that requires no additional
software installation but can offer a limited user interface only. The next
version of the CAS-console will require a newer java version with enhanced
graphical capabilities. Several small presentation problems, e.g., an un-



necessary amount of brackets in the formulas, were solved quickly. Ac-
TIVEMATH’ learning materials are not stored as predefined HTML pages,
but encoded in an knowledge representation that separates content from
presentation. This allows to adapt the presentation rather straightforward
because only a single presentation rule has to be changed.

5 Conclusion and Near Future

We have integrated Computer Algebra Systems into the learning environ-
ment ACTIVEMATH and employed their computational power to support
active and exploratory learning as well as evaluation and feedback for the
student’s problem solving actions.

Three of the most interesting technical novelties for ITSs in general —
apart from the technical integration of CASs — might be the distinction
between five classes of test conditions for user input in CAS, the dynamic
generation of several types of local feedback in CAS-exercises with the
help of the CAS, and the saving of the student’s solution for later usage.

We conducted a preliminary formative study to evaluate the content
and design of CAS-exercises and their surroundings in ACTIVEMATH.
The results were promising in terms of exploratory learning and increased
motivation and also gave rise to some technical changes that made the
interface more effective for students.

To address those questions that we were unable to investigate in the
described preliminary evaluation, we are planning to conduct a more for-
mal study with more students. In one of the next studies we not only plan
to test the actual post-performance but also plan to investigate the ques-
tion how the difficulty and complexity of exercises influences the student’s
use and benefit from ACTIVEMATH.

As a first step towards an authoring tool, we will prepare templates
for each class of test conditions to facilitate the creation of CAS exercises.

For the technical development, very soon the integration of CASs into
AcTIVEMATH will be augmented by an intermediator, a module that
provides several useful functionalities among others abstract input syntax,
abstract authoring language, user-adaptive help and feedback, and more
sophisticated detection of syntax errors.

An extended version of this paper is available as a technical report [4].

References

1. B.W. Char, G.J. Fee, K.O. Geddes, G.H. Gonnet, and M.B. Monagan. A tutorial
introduction to MAPLE. Journal of Symbolic Computation, 2(2):179-200, 1986.



w

10.

. C. Conati, A.S. Gertner, K. VanLehn, and M. Druzdzel. On-line student modeling

for coached problem solving using baysian networks. In A. Jameson, C. Paris, and
C. Tasso, editors, User Modeling: Proc. of UM97, pages 231-242, 1997.

B.I. Dahn and H. Wolters. Analysis Individuell. Springer-Verlag, 2000.

The ActiveMath group. Using computer algebra systems as cognitive tools. Tech-
nical Report RR-02-01, DFKI Saarbriicken, Saarbriicken, 2002.

B. Jacobs. Aufgaben stellen und Feedback geben. Technical report, Medienzentrum
der Philosophischen Fakultat der Universitat des Saarlandes, 2001.

W.R. Joolingen and T. Jong. Design and implementation of simulation-based
discovery environments: the SMISLE solution. Journal of Artificial Intelligence
and Education, 7:253-277, 1996.

S. Lajoie and S. Derry, editors. Computers as Cognitive Tools. Erlbaum, Hillsdale,
NJ, 1993.

E. Melis and E. Andres. Evaluators and suggestion mechanisms for activemath.
Technical report, DFKI, 2002.

E. Melis, E. Andres, G. Goguadze, P. Libbrecht, M. Pollet, and C. Ullrich. Ac-
tivemath: System description. In J. D. Moore, C. Redfield, and W. L. Johnson,
editors, Artificial Intelligence in Education, pages 580582, 2001. IOS Press.
Andreas Sorgatz and Ralf Hillebrand. MuPAD. Linuz Magazin, (12/95), 1995.



