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Abstract

Restricted Boltzmann Machines are com-
monly used in unsupervised learning to ex-
tract features from training data. Since these
features are learned for regenerating train-
ing data a classifier based on them has to be
trained. If only a few of the learned features
are discriminative other non-discriminative
features will distract the classifier during
the training process and thus waste com-
puting resources for testing. In this paper,
we present a hybrid third-order Restricted
Boltzmann Machine in which class-relevant
features (for recognizing) and class-irrelevant
features (for generating only) are learned si-
multaneously. As the classification task uses
only the class-relevant features, the test it-
self becomes very fast. We show that class-
irrelevant features help class-relevant features
to focus on the recognition task and intro-
duce useful regularization effects to reduce
the norms of class-relevant features. Thus
there is no need to use weight-decay for the
parameters of this model. Experiments on
the MNIST, NORB and Caltech101 Silhou-
ettes datasets show very promising results.

1 INTRODUCTION

Restricted Boltzmann Machines (RBM) (Hinton and
Sejnowski, 1986) (Freund and Haussler, 1992) have be-
come increasingly popular because of their excellent
ability in feature extraction and been successfully ap-
plied in various application domains.
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Usually RBM are trained in an unsupervised manner
by the Contrastive Divergence (CD) algorithm (Hin-
ton, 2002). After training, each hidden unit in the
RBM functions as a feature detector. Since these fea-
tures capture most of the statistical structure in the
observed data they can be used to construct sophisti-
cated classifiers with excellent performance in several
challenging classification tasks (Hinton and Salakhut-
dinov, 2006; Salakhutdinov and Hinton, 2009).

However, these features learned by RBMs in such an
unsupervised manner may not be totally appropriate
for classification tasks. Firstly, in some difficult clas-
sification tasks, observed data from different classes
share a significant amount of features, thus left a few
of the learned generative features being discrimina-
tive. In consequence a classifier based on all of the
learned features can be very inefficient. Secondly, al-
though features with larger norms can generate data
better, the norms of these generative features could
be too large for recognition tasks (see details in sec-
tion 2). Using a strong weight-decay strategy might
reduce the capacity of RBMs and restrict RBMs from
learning regularities in observed data. On the other
hand, using a weak weight-decay strategy may result
in features with large norms, which have a negative im-
pact on recognition tasks. Thus training RBMs need
a carefully designed weight-decay strategy (Swersky,
2010).

To address these two issues, we try to seek compact
discriminative features with relatively small norms.
In this paper, we present a hybrid 3-order Re-
stricted Boltzmann Machine, in which the hidden units
are divided into two parts, class-relevant and class-
irrelevant. Both class-relevant and class-irrelevant hid-
den units are trained to model the joint distribution
of observed data, x and labels, y. The conditional
distribution, P (y|x) is only composed of the class-
relevant hidden units. We also present a variant of
the Contrastive Divergence algorithm for training this
hybrid 3-order RBM. By using this CD variant, class-
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irrelevant hidden units can learn the shared features
(which are probably unsuitable for recognition tasks)
faster than class-relevant units. Class-relevant units
are thus restricted from learning those features. Class-
irrelevant units can also help class-relevant units to
generate better negative data and thereby limit the
growth of the class-relevant feature norms. Thus there
is no need to use weight-decay for the parameters in
the hybrid 3-order RBM. Empirically we find that by
using only a few class-relevant units the classifier can
achieve fairly good classification accuracies.

In the next section we give an introduction to RBMs
and Contrastive Divergence. Then we explain why
good generative features might not be good for recog-
nition tasks. In section 3, we introduce the hybrid 3-
order RBM. In section 4, the training algorithm based
on Contrastive Divergence is presented. We also give
an interpretation of the algorithm from the perspective
of energy-based models. Section 5 discusses important
related work. The experimental results based on the
MNIST, NORB and Caltech101 Silhouettes datasets
are shown in section 6.

2 RESTRICTED BOLZMANN
MACHINES AND
CONTRASTIVE DIVERGENCE

A Restricted Boltzmann Machine is a two layer neural
network with one visible layer representing observed
data and one hidden layer as feature detectors. Con-
nections only exist between the visible layer and the
hidden layer. Here we assume that both the visible
and hidden units of the RBM are binary. The models
below can be easily generalized to other types of units
(Welling et al., 2005). The energy function of a RBM
is defined as

E(x, h) = −
∑
i,j

xihjwij (1)

where xi and hj denote the states of the ith visible
unit and the jth hidden unit, while wij represents the
strength of the connection between them. For simplic-
ity, we omit the biases of the visible and hidden units.

Based on the energy function, we can define the joint
distribution of (x, h),

P (x, h) =
exp(−E(x, h))

Z
(2)

where Z =
∑

x,h exp(−E(x, h)).

Given the state of the visible units, the activation

probability of the hidden unit is

P (hj = 1|x) = sigmoid(xTw.j)

=
1

1 + exp(−xTw.j)

(3)

where w.j denotes the jth column of W . For xTw.j =
cos(α)∥w.j∥2∥x∥2 (α is the angle of the vector w.j and
x), the activation probability can be interpreted as the
similarity between x and the feature w.j in data space.
As we can assume that all data has the same length,
the activation probability is completely dependent on
∥w.j∥2 and α. More specifically, when α is below a
specific threshold (x is close enough to the direction
of w.j), x activates the hidden unit firmly. Increasing
∥w.j∥2 increases the threshold. In consequence addi-
tional training data activates the hidden unit with a
very high probability because of the larger threshold.
Thus its feature will be less discriminative.

The activation probabilities of the visible units are
similar, P (xi = 1|h) = sigmoid(wi.h).

The marginal distribution over the visible units actu-
ally is a model of products of experts (Hinton, 2002),

P (x) =

∏
j(1 + exp(xTw.j))

Z
(4)

From equation 4 we can deduce that each expert will
contribute probabilities according to the similarity be-
tween its feature and the data vector x.

The objective of generative training of a RBM is to
model the marginal distribution of the visible units
P (x). To do this, we need to compute the gradient of
the training data likelihood,

∂ logP (x(n))

∂θ
= −

⟨∂E(x(n), h)

∂θ

⟩
P (h|x(n))

+
⟨∂E(x, h)

∂θ

⟩
P (x,h)

(5)

where < . >P is the expectation with respect to the
distribution P . Hinton (2002) shows that we can get
very good approximations to the second term when
running the Gibbs sampler only k-step, initialized from
the training data. Named Contrastive Divergence
(CD), the algorithm updates the feature of the jth hid-
den unit after seeing the training data x(n),

∆w.j = P (hj = 1|x(n)) · x(n) − P (hj = 1|x(n)−) · x(n)−

(6)

x(n)− = sigmoid(
∑
j

ĥjw.j) (7)

where ĥj is sampled from P (hj = 1|x(n)).

From equation 6 it can be seen that there is little learn-
ing when the reconstruction are very good (x(n)− is
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very similar to x(n)). In other words, the CD algo-
rithm aims at learning such features which can be used
to regenerate training data well.

Unfortunately, the learned generative features may not
be appropriate for a recognition task for two reasons.
Firstly, only some of the generative features are dis-
criminative. Lots of the generative features are local
and learned from the parts of a training data that have
high reconstruction errors (Hinton, 2002, section 12.2).
These parts with reconstruction errors may be located
anywhere in the training data. Some of them are rel-
evant to a recognition task and some are not. For
example, when a RBM is trained to model handwrit-
ten digits, some of features resemble different strokes
and some of them look like ”point” filters. The lat-
ter is probably shared by images from different classes
and thus less discriminative than the former. Secondly,
the generative features’ norms may be too large to be
suitable for a recognition task. To achieve a good re-
construction some specific visible units need to receive
large (small) enough inputs to be turned on (off).There
are two ways to ensure large (small) inputs, namely al-
lowing some elements of features to become big (small)
or using a large number of hidden units. Both ways
have their own shortcoming. The former makes the
feature norms too large to be discriminative. Although
the latter keeps the feature norms small, the classifier
trained on such a large number of features need a much
longer time for training and testing.

In order to obtain discriminative features while at the
same time to restrict the number of features as less as
possible, we propose to divide hidden units into two
parts, namely class-relevant hidden units and class-
irrelevant hidden units. Class-relevant units learn from
training data with the same class. Class-irrelevant hid-
den units, like hidden units in regular RBMs trained
in an unsupervised manner, learn from all of the train-
ing data. These two kinds of units together compose
a hybrid 3-order RBM.

3 HYBRID THIRD-ORDER RBM
FOR CLASSIFICATION

We use a third-order Restricted Boltzmann machine
(Sejnowski, 1986; Nair and Hinton, 2009) to model the
joint distribution of observed data and labels. Further-
more, class-irrelevant units are introduced to restrict
the class-relevant units to model the features shared
by data from different classes. This model can be seen
as a hybrid 3-order RBM and is illustrated in Figure 1.
The energy function is

E(x, y, g, h) = −
∑
i,j′

xigj′w
0
ij′ −

∑
i,j,k

xih
k
jw

k
ijyk (8)

Figure 1: Third-order Restricted Boltzmann Machine
with class-irrelevant units. The black circles are for
implementing biases.

where hk
j is the jth hidden unit of class k, and gj′

denotes the j′th class-irrelevant hidden unit. Class la-
bels y are K-dimensional binary vectors with 1-of-K
activation. It can be seen that only parts of the pa-
rameters are related to the class labels. Again we omit
the biases of the visible and hidden units. Based on
the energy function, we define the joint distribution of
(x, y) as,

P (x, y) =

∑
h,g exp−E(x, y, g, h)

Z
(9)

where Z is the normalization factor.

The activation probabilities of the hidden and visible
units are straightforward

P (gj′ = 1|x) = sigmoid(xTw0
.j′) (10)

P (hj = 1|x, yk = 1) = sigmoid(xTwk
.j) (11)

P (xi = 1|g, h, yk = 1) = sigmoid(wk
i.h

k + w0
i.g) (12)

From equation 12 it can be seen that both class-
relevant units and class-irrelevant units are used for
generating data.

Because of the normalization factor, the joint distri-
bution P (x, y) is intractable. But the conditional dis-
tribution P (yk = 1|x) is tractable:

P (yk = 1|x) =
∑

h P (x, yk = 1, h)∑K
l=1

∑
h̃ P (x, yl = 1, h̃)

=

∏
j(1 + exp(xTwk

.j))∑K
l=1

∏
j(1 + exp(xTwl

.j))

(13)

where the class-irrelevant features are canceled out.
Equation 13 requires O(NV NRHK) computation,
whereNV , NRH andK are the number of visible units,
the number of class-relevant hidden units of each class
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and the number of classes, respectively. To ensure that
testing takes place in an efficient manner, the number
of class-relevant hidden units has to be confined, espe-
cially when the input data x is in a high dimensional
space and/or the number of classes is large.

Equation 13 shows that this classifier is a model of
products of experts. When x is similar to the fea-
ture of one specific hidden unit of class k, this unit
will contribute probabilities on class k. As discussed
in section 2, the features with large norms are less
discriminative since the value of xTwk

.j could be dom-

inated by the norm ∥wk
.j∥2. Furthermore, if some of

the class-relevant features are shared by two or more
different classes’ data the model could be distracted.
In the next section, we introduce a variant of the CD
algorithm to train the hybrid 3-order RBM.

4 LEARNING ALGORITHM

Given the training data {(x(1), y(1)), ..., (x(N), y(N))},
the hybrid RBM is trained by maximizing the log like-
lihood L =

∑N
n=1 logP (x(n), y(n)). There is a need to

compute the following gradient,

∂L

∂θ
= −

N∑
n=1

<
∂E(x(n), y(n), g, h)

∂θ
>P (g,h|x(n),y(n))

+N <
∂E(x, y, g, h)

∂θ
>P (x,y,g,h)

(14)

The first term of equation 14 is tractable and
can be computed effectively. We use a variant
of the CD algorithm to approximate the second
term. Given the training data (x(n), y(n)), we sample

(ĝ(n), ĥ(n)) from P (g|x(n)) and P (h|x(n), y(n)). Then
we take two steps to reconstruct the negative sample
(x(n)−, y(n)−). Firstly, we fix y(n) and sample x(n)−

from P (x|y(n), ĝ(n), ĥ(n)). Secondly, we sample y(n)−

from P (y|x(n)−). We summary this process in Algo-
rithm 1. To speed up the training process, we can
divide the training data into mini-batches. Here Nb is
the size of a mini-batch.

Based on Algorithm 1, the update of j′th class-
irrelevant unit’s features is

∆w0
.j′ =

λ

Nb

∑
n

P (gj′ = 1|x(n)) · x(n))

−P (gj′ = 1|x(n)−) · x(n)−
(15)

which is independent of the label, y(n).

The update of the jth hidden unit’s feature of class k

Algorithm 1

Input: training data {(x(1), y(2)), ..., (x(Nb), y(Nb))},
learning rate λ and θ ∈ (W 0,W 1, ...,WK)
for n = 1 to Nb do

g(n) = P (g|x(n))
h(n) = P (h|x(n), y(n))
Sample ĝ(n) from P (g|x(n)).

Sample ĥ(n) from P (h|x(n), y(n)).

Sample x(n)− from P (x|ĝ(n), ĥ(n), y(n)).
Sample y(n)− from P (y|x(n)−).
g(n)− = P (g|x(n)−)
h(n)− = P (h|x(n)−, y(n)−)

end for
θ = θ − λ

Nb

∑Nb

n=1
∂
∂θE(x(n), y(n), g(n), h(n)) −

∂
∂θE(x(n)−, y(n)−, g(n)−, h(n)−)

is

∆wk
.j =

λ

Nb

∑
{n|y(n)

k =1}

P (hk
j = 1|x(n), y

(n)
k = 1) · x(n)

−
∑

{n′|y(n′)−
k =1}

P (hk
j = 1|x(n′)−, y

(n′)−
k = 1) · x(n′)−

(16)

Assuming that the label of x(n) is l (y
(n)
l = 1), the

corresponding negative sample is

x
(n)−
i = sigmoid(wl

i.ĥ
(n) + w0

i.ĝ
(n)) (17)

From equation 15 and 16, both class-relevant and
class-irrelevant hidden units learn from the parts of
a training data that have high reconstruction er-
rors. Both of them have a chance to learn features
shared by data from different classes. However, these
non-discriminative features probably appear more fre-
quently in the training data than those features which
are unique for one specific class’s data. Class-relevant
units thus learn the non-discriminative features more
slowly than class-irrelevant units since in each learning
epoch one specific class-relevant unit only learn from
its own class’s data. In other words, class-irrelevant
units receive much more learning signals of these non-
discriminative features than class-relevant units do
and thus model them well before class-relevant units
can. While the training process is going on, the re-
construction errors located in the non-discriminative
parts are reduced quickly by the class-irrelevant units.
In consequence the class-relevant units are restricted
from learning in those parts.

From equation 17, by adopting a large number of class-
irrelevant units, we can easily make the visible units
receive large (small) enough inputs to achieve a good
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reconstruction and keep all of the hidden units’ norms
relatively small. On the other hand, since those class-
irrelevant units do not appear in the classifier we still
can keep the parameters of the classifier at a reason-
able scale to ensure efficient testing.

Next we interpret our algorithm from an energy
model’s perspective. Without considering class-
irrelevant units, class-relevant units can be represented
as the following energy model

Energy(x, y) = −
K∑

k=1

yk
∑
j

log(1 + exp(xTwk
.j)) (18)

We expect that the energy surfaces decided by equa-
tion 18 give low energies to areas around the training
data set and high energies to all other areas. Since our
final objective is to learn discriminative features for a
recognition task, the energy surfaces need to have a
local structure to achieve the above expectation. To
obtain such a local structure, Ranzato et al. (2007)
proposed to pull energies down on the training set and
pull energies up on some contrastive samples. For-
mally, given training data pair (x(n), y(n)) we need find
the following contrastive sample

(x∗, y∗) = argmin{x∈N(x(n)),y}Energy(x, y) (19)

where N(x(n)) is the neighborhood of x(n).

Our learning algorithm actually performs this intu-
ition. Equation 16 is the gradient of the following
objective function

max
W

∑
n

Energy(x(n)−, y(n)−)− Energy(x(n), y(n))

(20)
Equation 16 is aimed at decreasing energies of the
training data and increasing energies of the corre-
sponding negative data. The negative data can be seen
as a stochastic approximation to the contrastive sam-
ple in equation 19 and is generated in two steps (See
Algorithm 1). These two steps are designed to make
the negative data on average coming from the low en-
ergy areas which are near the training data. Further-
more, class-relevant and class-irrelevant units implic-
itly defined the neighborhood of equation 19. Better
reconstruction imply smaller neighborhood. During
the learning process, the class-irrelevant hidden units
help the class-relevant units reconstructing the neg-
ative sample increasingly better (meaning x(n)− be-
ing increasingly similar to x(n)). In other words, the
neighborhood of x(n) in equation 19 is narrowed more
quickly by using both the class-irrelevant and the class-
relevant units than by using the latter alone. Thus the
class-irrelevant units can help the class-relevant units
focusing on the increasingly narrowed local area of the

training data and finally speed-up the convergence of
the learning process.

Since all weights are randomly initialized before the
training process starts, the differences between the en-
ergy functions given the training data may be huge.
That means before learning the classifier has already
had a big bias towards the training data. Following
(Nair and Hinton, 2009), we introduced a tempera-
ture T to the distribution P (y|x) eliminating the bias
and we can start learning with a vague conditional
distribution.

P (yk = 1|x) = exp(−Energy(x, yk = 1)/T )∑K
l=1 exp(−Energy(x, yl = 1)/T )

(21)
In algorithm 1 we use equation 21 as the conditional
distribution. With the learning process going on the
confidence in the learned conditional distribution in-
creases and then gradually anneals the temperature.

5 RELATED WORK

Nair and Hinton (2010) present a third-order Re-
stricted Boltzmann Machine as a top-layer for Deep
Belief Nets applied for 3D object recognition. Our
work is different from their work in two ways. Firstly,
we introduce class-irrelevant units to make class-
relevant features discriminative and restrict the growth
of class-relevant features’ norms. In (Nair and Hin-
ton, 2010), there are no class-irrelevant units. This
results in a significant larger number of hidden units
in Nair’s model than ours (see the next section for de-
tails). Secondly, the learning algorithms are different
in the two models. In Nairs model given training data
(x, y), the activation probabilities of hidden units of

class y in Nair’s model are computed first. ĥ is sam-
pled from P (h|x, y). Then the negative class label y−

is sampled from P (y|ĥ). At last x− is sampled from

P (x|ĥ, y−). This inference process implies that the
states of hidden units contain discriminative informa-
tion. This also causes a large number of hidden units
in their model.

Salakhutdinov and Hinton (2007) used a deep neural
network to learn a nonlinear embedding. After pre-
training the network, the codes of top layer are split
into class-relevant and class-irrelevant parts. During
the fine-tuning process only the class-relevant codes
contribute to the Neighborhood Component Analysis
(NCA) objective function. In essence the features of
the deep network are found by unsupervised pretrain-
ing. The class-relevant codes are used to select dis-
criminative features. However in our model there is no
unsupervised pretraining process and all class-relevant
features are learned directly from training data. Fur-
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thermore, in (Salakhutdinov and Hinton 2007) weight-
decay for parameters is necessary during the pretrain-
ing process.

6 EXPERIMENTS

We applied our algorithm to the MNIST1, NORB2 and
Caltech101 Silhouettes (28× 28)3 datasets.

Our model is trained by minimizing the negative log-
likelihood L = −

∑N
n=1 logP (x(n), y(n)), which can

be divided into two parts −
∑N

n=1 logP (y(n)|x(n)) and

−
∑N

n=1 logP (x(n)) . While the training process is go-
ing on, the increase of the log likelihood is dominated
by the second part. Therefore we stop the training
process as soon as the errors on the training set do
not decrease during 10 iterations.

6.1 The MNIST Experiments

The MNIST dataset consists of 60,000 training and
10,000 test images of ten handwritten digits (from
0 to 9). We performed model selection on a subset
of MNIST, which contains 10,000 training and 1000
test images randomly selected from the 60,000 train-
ing images. In all experiments on MNIST, the learn-
ing rate and initial temperature were set to 0.0001 and
10. We configured the model to consist of 100 class-
relevant units for each class and 400 class-irrelevant
units (R100IR400). We compare this model to a sec-
ond one called R140IR0, which is a third-order RBM
with 140 class-relevant hidden units for each class and
without class-irrelevant units. Then R140R0 has the
same number of trainable parameters with R100IR400.
As discussed above, since there are no class-irrelevant
units the weights of R140IR0 need to be regularized
by weight-decay. The parameter of weight-decay is se-
lected by the subset of MNIST and set to 0.0002. Fol-
lowing (Larochelle and Bengio, 2008), we use stochas-
tic gradient descent (Nb = 1) to train these models.

Due to space reasons, we show only 100 class-irrelevant
features in figure 2 and class 0’s features of R100IR400
in figure 3.

As show in figure 2, some class-irrelevant features are
quite local and detect an on-center off-surround struc-
ture (for example the one in column 1, row 1 and col-
umn 4, row 3). Those class-irrelevant features are ob-
viously shared by data with different classes.

In contrast, all of the class-relevant features in fig-
ure 3 look similar to different shapes of handwritten

1http://yann.lecun.com/exdb/mnist/
2http://www.cs.nyu.edu/∼ylclab/data/norb-v1.0/
3http://www.cs.ubc.ca/∼bmarlin/data/

Figure 2: Random selected class-irrelevant features in
R100IR400.

Figure 3: Features of class 0 in R100IR400.

zeros. To generate a picture of handwriting, the class-
relevant features may focus on the shape of a specific
class’s digits and the class-irrelevant features may de-
cide the strokes’ thickness and the background of the
picture.

We show 100 class-relevant features of class 0 from
R140IR0 in figure 4. We can see the background
of R140IR0’s features are neater than those of
R100IR400. The background of R100IR400’s class-
relevant features resemble meaningless noise. This
means that with the help of class-irrelevant units the
class-relevant units in R100IR400 avoid to learn the
parts of the training data which do not contain dis-
criminative information.

The results of our models and other state-of-the-
art algorithms on MNIST are given in Table 1.
R100IR400 achieves a similar error rate as Sparse
HDRBM (Larochelle and Bengio, 2008), and outper-
forms regular RBM (Larochelle and Bengio, 2008),
R140IR0, Support Vector Machine (SVM) (Decoste
and Schölkopf, 2002) and Deep Belief Nets (DBN)
(Hinton et al., 2006). Note that R100IR400 is
trained generatively. It is very likely that R100IR400
does not make full use of the discriminative ca-
pacity. We have fine-tuned R100IR400 discrimina-
tively by minimizing the conditional log-likelihood
(−

∑N
n=1 logP (y(n)|x(n))) after the above generative

training process. We randomly selected 10,000

Figure 4: Features Of class 0 In R140IR0.
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Table 1: Comparison of the classification performances
on the MNIST dataset.

Model Parameters for test Error
RBM 4,770,794 3.39%
R140IR0 1,099,784 1.88%
SVM - 1.4%
DBN 1,665,794 1.25%
Sparse HDRBM 2,385,794 1.16%
R100IR400 785,784 1.14%
DBM 904,294 0.95%

smaples in MNIST training data set as the validation
set to decide the number of sweeps for fine-tuning. We
fine-tuned the model by using the method of conju-
gate gradients4 on mini-batches containing 1000 sam-
ples. Three line searches were performed for each
mini-batch in each epoch. After fine-tuning, the test
error of R100IR400 is 1.04%, which is better than
the result of Sparse HDRBM and worse than the
best published result on the permutation-invariant ver-
sion of the MNIST task achieved by DBM. Training
R100IR400 in Matlab 2010b on an Intel Xeon 2.4GHz
machine takes 38 hours. However, training a DBM5

on the same machine takes almost 3 days.

In our approach, since the class-irrelevant units restrict
the class-relevant units to model features shared by
data from different classes, by using few class-relevant
units the classifier have achieved fairly good classifica-
tion accuracies. From Table 1, compared with other
methods, our models used for classification have the
fewest parameters, which amounts to about half of the
parameters of DBN and one third of the parameters
of Sparse HDRBM.

Furthermore, to quantitatively illustrate the regular-
ization effects introduced by class-irrelevant units, we
show the average norms of the class-relevant and class-
irrelevant units during the learning process in figure 5.

6.2 The NORB Experiments

The NORB dataset contains stereo image pairs of 50
different 3D toy objects with 10 objects in each of
five generic classes (four-legged animals, humans, air-
planes, trucks and cars). Each object is captured from
different viewpoints and under various lighting condi-
tions. The training set contains 24,300 stereo image
pairs of 25 objects, 5 per class, while the test set con-
tains 24,300 stereo pairs of the remaining, different 25
objects. The goal is to classify each previously unseen
object into its generic class. Some examples in NORB

4We used Carl Rasmussen’s ”minimize” code available
at www.kyb.tuebingen.mpg.de/bs/people/carl/code.

5We used Ruslan Salakhutdinov’s codes available at
http://www.mit.edu/∼rsalakhu/DBM.html.

0 2e+3 4e+3 6e+3 8e+3 10e+3 12e+3
2.5

3

3.5

4

4.5

5

5.5

6

number of parameter update

av
er

ag
e 

no
rm

 

 

Class−relevant units
Class−irrelevant units

Figure 5: The average norms of the class-relevant and
class-irrelevant units.

Figure 6: Some examples in the NORB dataset.

are shown in figure 6.

The NORB dataset is much more challenging than
MNIST because of the fact that the only useful and
discriminative features are the shapes of the different
objects while all the other parameters that affect the
appearance are class-irrelevant.

To model raw pixel data of the NORB dataset, we
need to use Gaussian units. However, learning a RBM
with Gaussian units is very slow6. To speed up the
training process, we divided the training data into
mini-batches, and updated the weights after each mini-
batch. We set the size of mini-batches Nb = 100 at
the first 40 sweeps through the training set and then
change the size to Nb = 1000 for the following sweeps.
Furthermore, we subsampled the images from 96× 96
to 32 × 32. This results in 24,300 2048-dimensional
vectors in the training set and an equal number of
vectors in the test set. We rescale all training data
to have zero mean and unit variance (all test data are
rescaled by the means and variances of training data).

We performed model selection on the subset of NORB,
which contains 5,000 training and 5,000 test images
randomly selected from the 24,300 training images. In
all experiments on NORB, the learning rate and ini-
tial temperature were set to 0.001 and 15. The best
classification results on the subset of NORB are given

6The details of using Gaussian units in RBM can be
found in (Taylor et al. 2006).
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by 100 class-relevant hidden units for each class and
6000 class-irrelevant hidden units (R100IR6000).

It came to us as a surprise that the best classifica-
tion results on the subset of NORB were achieved
by using only 100 class-relevant hidden units for each
class. That might be due to the fact that the NORB
are more challenging than MNIST because there are
more class-irrelevant features in NORB. This model
(R100IR6000) achieves a very good error rate of 9.7%
on the test set. Similar to the procedure for the
MNIST experiments, we discriminatively fine-tuned
R100IR6000. We randomly selected 4300 image pairs
in NORB training data set as the validation set to de-
cide about the number of sweeps for fine-tuning. After
fine-tuning, the test error rate of R100IR6000 is 8.9%.
Previous result were 11.6% achieved by SVM’s (Ben-
gio and LeCun 2007), 18.4% achieved by the K-nearest
neighbours (LeCun et al. 2004) and 10.8% achieved by
Deep Boltzmann Machine (Salakhutdinov and Hinton,
2009). Furthermore, the SVM contains about 6,800
support vectors and the DBM is a 3-layer Boltzmann
Machine (the bottom layer as a preprocessed layer to
convert NORB data from real vectors to binary vec-
tors) with 12,000 hidden units in total. Our model for
classification task only contains 500 hidden units. This
results in a very fast test speed: testing all 24,300 im-
age pairs takes only 9 seconds in Matlab 2010b on an
Intel 2.4Ghz processor. In addition, the learning pro-
cess of R100IR6000 stopped after trained for 56 sweeps
through the training set, which takes about 12 hours.
This is very fast considering that in order to obtain an
good RBM with Gaussian units on NORB requires 500
training sweeps (Salakhutdinov and Hinton, 2009).

Nair and Hinton (2010) preprocessed images in NORB
by using a ”foveal” image representation. The foveal
representation reduces the dimensionality of an orig-
inal stereo-pair in NORB from 18432 to 8976. To
enable a comparison with their method, we also
preprocessed data in this way and trained a hy-
brid third-order RBM with 100 class-relevant hid-
den units for each class and 8000 class-irrelevant hid-
den units(R100IR8000). R100IR8000 achieves a er-
ror rate of 14.2%. The result of Nair’s model is
20.8%. In addition, Nair’s model for classification has
179,548,976 parameters, a significantly greater amount
than in our setting, 79,313,476 trainable parameters
and only 4,407,796 parameters used for classification
in R100IR8000.

6.3 The Caltech101 Silhouettes Experiments

Caltech101 Silhouettes is a binary image data set de-
rived from CalTech1017 by Marlin and et al. (2010).

7www.vision.caltech.edu/Image Datasets/Caltech101

Figure 7: Caltech101 Silhouettes data sample.

Some examples in Caltech101 Silhouettes are shown in
figure 7. The data set includes 4100 examples with at
least 20, and at most 100 examples from each class in
the training set, 2264 examples in the validation set
and 2307 examples in the test set. The Caltech101
Silhouettes data set is very different from MNIST
and NORB. It contains a significant larger number of
classes (101 in total) but much fewer samples for each
class than MNIST and NORB. As discussed in section
3, it is very important to restrict the number of class-
relevant units when the number of classes is large.

We perform model selection on the validation set. The
learning rate and initial temperature were set to 0.1
and 15. The best classification results on the valida-
tion set are given by 50 class-relevant hidden units
for each class and 500 class-irrelevant hidden units
(R50IR500). We trained this model (R50IR500) on a
new training set composed by the original training set
and the validation set. To speed up the training pro-
cess, we divided the training data into mini-batches
(the size of mini-batches Nb = 100). R50IR500
achieves an error rate of 28.6% on the test set. Since
there are much less examples in the training set of
Caltech101 Silhouettes than MNIST and NORB, we
do not further discriminatively fine-tune this model to
avoid overfitting. The learning process of R50IR500
takes about 3 hours. Marlin’s result on this data set
is about 34.2%.

7 CONCLUSIONS

In this paper, we described a hybrid third-order RBM
that learns class-relevant and class-irrelevant features
simultaneously. Classification uses only the class-
relevant features. It leads to a lightweight classifier.

Because in the training data the shared features ap-
pear more frequently than the discriminative features,
class-irrelevant hidden units can learn the shared fea-
tures faster than class-relevant units. We showed that
the class-relevant features become discriminative and
compact. In addition, class-irrelevant units introduce
useful regularization effects to restrict the growth of
norms of class-relevant features. Thus there is no need
to use weight-decay for the parameters in this hybrid
3-order RBM.
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