
Sparse Group Restricted Boltzmann Machines

Heng Luo† Ruimin Shen† Changyong Niu‡ Carsten Ullrich†
†Shanghai Jiao Tong University

‡Zhengzhou University
†{hengluo, rmshen, ullrich c}@sjtu.edu.cn ‡iecyniu@zzu.edu.cn

Abstract

Since learning in Boltzmann machines is typically quite
slow, there is a need to restrict connections within
hidden layers. However, the resulting states of hidden
units exhibit statistical dependencies. Based on this ob-
servation, we propose using l1/l2 regularization upon
the activation probabilities of hidden units in restricted
Boltzmann machines to capture the local dependencies
among hidden units. This regularization not only en-
courages hidden units of many groups to be inactive
given observed data but also makes hidden units within
a group compete with each other for modeling observed
data. Thus, the l1/l2 regularization on RBMs yields
sparsity at both the group and the hidden unit levels.
We call RBMs trained with the regularizer sparse group
RBMs (SGRBMs). The proposed SGRBMs are applied
to model patches of natural images, handwritten dig-
its and OCR English letters. Then to emphasize that
SGRBMs can learn more discriminative features we ap-
plied SGRBMs to pretrain deep networks for classifi-
cation tasks. Furthermore, we illustrate the regularizer
can also be applied to deep Boltzmann machines, which
lead to sparse group deep Boltzmann machines. When
adapted to the MNIST data set, a two-layer sparse group
Boltzmann machine achieves an error rate of 0.84%,
which is, to our knowledge, the best published result on
the permutation-invariant version of the MNIST task.

Introduction
Restricted Boltzmann Machines (RBMs) (Smolensky 1986;
Freund and Haussler 1994; Hinton 2002) recently have be-
come very popular because of their excellent ability of un-
spervised learning, and have been successfully applied in
various application domains, such as dimensionality reduc-
tion (Hinton and Salakhutdinov 2006), Object Recognition
(Lee et al. 2009) and others.

For the purpose of obtaining efficient and exact inference,
there are no connections within the hidden layer in RBMs.
But by considering statistical dependencies of states of hid-
den units we may learn a more powerful generative model
(Garrigues and Olshausen 2008). Following this idea, in or-
der to consider, at least to some extent, statistical dependen-
cies of states of hidden units and meanwhile keeping the ex-
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act and efficient inference in RBMs, we introduce a l1/l2
regularizer on the activation probabilities of hidden units
given training data.
l1/l2 regularizer has been intensively studied in both the

statistics community (Yuan and Lin 2006) and machine
learning community (Bach 2008). Usually the l1/l2 regular-
izer (or group lasso) only leads to sparsity at the group level
but not within a group. In this paper, we show that introduc-
ing the l1/l2 regularizer on the activation probabilities can
yield sparsity at not only the group level but also the hidden
unit level. Thus, we call RBMs trained with the regularizer
sparse group RBMs (SGRBMs). Empirically we show that
SGRBMs can achieve better generative and discriminative
performances than RBMs. Furthermore, we also show the
regularizer can be easily applied to train deep Boltzmann
Machines.

Restricted Bolzmann Machines and
Contrastive Divergence

An RBM is a two layer neural network with one visible layer
representing observed data and one hidden layer as feature
detectors. Connections only exist between the visible layer
and the hidden layer. Here we assume that both the visible
and hidden units of the RBM are binary. The models below
can be easily generalized to other types of units (Welling,
Rosen-Zvi, and Hinton 2005). The energy function of an
RBM is defined as

E(x, h) = −
∑
i,j

xihjwij (1)

where xi and hj denote the states of the ith visible unit and
the jth hidden unit, while wij represents the strength of the
connection between them. For simplicity, we omit the biases
of the visible and hidden units.

Based on the energy function, we can define the joint dis-
tribution of (x, h)

P (x, h) =
1

Z
exp(−E(x, h)) (2)

Z =
∑
x̃,h̃

exp(−E(x̃, h̃)) (3)

where Z is the partition function.



Given observed data, the states of the hidden units are
conditionally independent. Their activation probabilities are,

P (hj |x) =
1

1 + exp(−xTw.j)
(4)

where w.j denotes the jth column of W , which is the con-
nection weights between the jth hidden unit and all visible
units. If more data in the training data set can activate a hid-
den unit with a high probability, the hidden unit’s feature
will be less discriminative. Thus it is sometimes necessary
to introduce sparsity in the hidden layer of an RBM (Lee,
Ekanadham, and Ng 2008; Larochelle and Bengio 2008;
Salakhutdinov and Larochelle 2010).

The marginal distribution over the visible units actually is
a model of products of experts (Hinton 2002)

P (x) =
1

Z

∏
j

(1 + exp(xTw.j))

=
1

Z

∏
j

1/(1− P (hj = 1|x))
(5)

From Equation 5 we can deduce that each expert (hidden
unit) will contribute probabilities according to the activation
probability given the data vector x. If given a data sample
one specific hidden unit will be activated with a high proba-
bility, we say the hidden unit is responsible for representing
the data sample.

The objective of generative training of an RBM is to
model the marginal distribution of the visible units P (x).
To do this, we need to compute the following gradient given
the training data x(l)

− <
∂E(x(l), h)

∂θ
>P (h|x(l)) + <

∂E(x, h)

∂θ
>P (x,h)

(6)

where < . >P is the expectation with respect to the dis-
tribution P . The second term of Equation 6 is intractable
since sampling the distribution P (x, h) requires prolonged
Gibbs sampling. Hinton (2002) shows that we can get very
good approximations to the second term when running the
Gibbs sampler only k steps, initialized from the training
data. Named Contrastive Divergence (CD) (Hinton 2002),
the algorithm updates the feature of the jth hidden unit see-
ing the training data x(l)

∆w.j = P (hj = 1|x(l)) · x(l) − P (hj = 1|x(l)−) · x(l)−

(7)
where x(l)− is sampled from P (x|h(l)) (h(l) sampled from
P (h|x(l))). The first term of Equation 7 will decrease the
energy of x(l) (which cause that x(l) would be more prob-
able under the RBM) (Bengio 2009). At the same time
this term also guarantees that hidden unit j will be acti-
vated with a higher probability when the hidden unit see
x(l) again, which means hidden unit j are learning to repre-
sent x(l). Because the hidden states of different hidden units
are conditionally independent given the data, all of hidden
units will independently learn to represent x(l) with different
speeds which are decided by their own activation probabili-
tiy (P (hj |x(l))). The learning process does not stop until the

reconstruction is perfect (x(l) = x(l)−). In the next section,
we introduce a mixed-norm (l1/l2) regularizer on the acti-
vation probabilities of hidden units given the training data
to make sure the learning process are not conditionally inde-
pendent and encourage the sparsity in the hidden units.

Sparse Group RBMs
Directly learning the statistical dependencies between all
of hidden units is inefficient. To alleviate this problem,
firstly we equally divide hidden units into predefined non-
overlapping groups to restrain the dependencies within these
groups. Secondly, instead of learning the dependencies we
penalize the overall activation level of a group. To imple-
ment the two above intuitions we introduce a mixed-norm
(l1/l2) regularizer on the activation probabilities of hidden
units given the training data.

Assuming an RBM has F hidden units, let H denote the
set of all hidden units’ indices: H = {1, 2, ..., F}. The kth
group is denoted by Gk where Gk ⊂ H, k = 1, ...,K. In this
paper, we set all of groups being non-overlapping and with
equal size. Given a grouping G and a data sample x(l), the
kth group norm Nk(x

(l)) is given by

Nk(x
(l)) =

√ ∑
m∈Gk

P (hm = 1|x(l))2 (8)

which is the Euclidean (l2) norm of the vector composed of
these activation probabilities and considered as the overall
activation level of kth group. Given all the group norms, the
mixed-norm is

K∑
k=1

|Nk(x
(l))| =

K∑
k=1

√ ∑
m∈Gk

P (hm = 1|x(l))2 (9)

which is the l1 norm of the vector composed of the group
norms.

We add the l1/l2 regularizer to the log-likelihood of train-
ing data. Thus, given training data, we need to solve the fol-
lowing optimization problem

max
W,b,c

L∑
l=1

logP (x(l))− λ

K∑
k=1

Nk(x
(l)) (10)

where λ is a regularization constant. To solve Equation 10,
we can apply the contrastive divergence update rule (see
Equation 6), followed by one step of gradient ascent using
the gradient of the regularization term.

The effects of a l1/l2 regularization can be interpreted on
two levels: an across-group and a within-group level. On the
across-group level, the group norms Nk behave as if they
were penalized by a l1 norm. In consequence, given ob-
served data some group norms are zero, which means the
activation probabilities of all hidden units in these groups
are zero since the activation probabilities are non-negative.
In other words, given a data sample only few groups’ hid-
den units are responsible to represent it. On the within-
group level, the l2 norm will equally penalize the activation
probabilities of all hidden units in the same group. The l2



norm thus does not yield sparsity within the group. How-
ever, when applied the l1/l2 on the activation probabilities it
is an entirely different story because of the Logistic differ-
ential equation. Below we will discuss it in detail.

By introducing this regularizer, Equation 7 is changed to
the following equation

∆w.j = P (hj = 1|x(l))·x(l)−P (hj = 1|x(l))·x(l)−−λ·α
(11)

α =
∂

∂w.j

K∑
k=1

Nk(x
(l))

=
P (hj = 1|x(l))

Nk′(x(l))
· ∂

∂w.j
P (hj = 1|x(l))

=
1

Nk′(x(l))
P (hj = 1|x(l))2P (hj = 0|x(l)) · x(l)

(12)

where we assume the jth hidden unit belongs to the k′th
group. The last step in Equation 12 uses the fact that
d
dtP (t) = P (t)(1 − P (t)) if P is a logistic function.
Unlike in Equation 7, hidden unit j is not independently
learning to represent x(l). The learning is now determined
by the activation probability P (hj = 1|x(l)) but also the
overall activation level of other hidden units in the same
group,

∑
m∈Gk′ ,m̸=j P (hm = 1|x(l))2. More specifically,

the speed of learning from x(l) is slowed by the following
factor,

P (hj = 1|x(l))2P (hj = 0|x(l))√∑
m∈Gk′ ,m ̸=j P (hm = 1|x(l))2 + P (hj = 1|x(l))2

(13)
We visualize the factor in Figure 1 where we assume there
are 5 hidden units in the group and the overall activation
levels are thus in the interval (0, 4).
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Figure 1: The factor defined in Equation 13. Here the hor-
izontal axis represents the activation probability P (hj =

1|x(l)) and the vertical axis represents the overall acti-
vation level of other hidden units in the same group,∑

m∈Gk′ ,m̸=j P (hm = 1|x(l))2.

In Figure 1, when the other hidden units in the
group are inactive for the data x(l) (a small value of∑

m∈Gk′ ,m̸=j P (hm = 1|x(l))2) the jth hidden unit is pe-
nalized strongly. In other words, hidden unit j is prohibited
from learning from x(l) because of the low group activa-
tion level. The first property of the l1/l2 regularizer is that
it encourages few groups to be active given observed data.

This property yields the sparsity at the group level. In Fig-
ure 1 it can also be seen that the effect of the regularizer will
vanish when P (hj = 1|x(l)) is close to 0 or 1. More specif-
ically, the effects of the regularizer diminish more quickly
when the activation probabilities are close to 0 instead of to
1 because of the square of P (hj = 1|x(l)) in Equation 13.
It can be interpreted as that hidden units in a group compete
with each other for learning to represent the data sample x(l)

(When x(l) = x(l)− the competition stops). Usually few of
hidden units in a group will win this competition. Thus, the
second property of the regularizer is that it results in only a
few hidden units to be active in a group. This property yields
the sparsity within the group. Based on these two properties,
we call RBMs trained by Equation 10 sparse group RBMs
(SGRBMs).

Relationship to third-order RBMs
A third-order RBM can be formed as a mixture model whose
components are RBMs (Nair and Hinton 2009). To a certain
extent, a trained third-RBM defines a special group sparse
representation for training data. Discussing the relationships
between a third-RBM and sparse group RBMs will give us
additional insights about the effects of l1/l2 regularizer for
RBMs.

The energy function of a third-order Boltzmann machine
is

E(x, h, z) = −
∑
i,j,k

xih
k
jw

k
ijzk (14)

where z is a K-dimensional binary vector with 1-of-K acti-
vation and represents the cluster label. The responsibility of
the kth component RBM is

P (zk = 1|x) =
∑

h P (x, zk = 1, h)∑K
l=1 P (x, zl = 1)

=

∏
j(1/(1− P (hk

j = 1|x))∑K
l=1

∏
j′(1/(1− P (hl

j′ = 1|x))

(15)

A third-order RBM with K components can be seen as
a regular RBM in which hidden units are divided into K
non-overlapping groups. Given a data x the responsibility,
P (z|x) is used to pick one group’s hidden units to respond
to the data. In other words, data will be represented by only
one group’s hidden units and the states of hidden units in
other groups will be set to 0. From this perspective, a third-
order RBM yields a special group sparsity given the training
data.

The group (component) which has the bigger value of∏
j(1/(1−P (hk

j = 1|x)) will more likely be responsible for
the data x. Given the data x the product

∏
j(1/(1−P (hk

j =

1|x)) can be interpreted as a measure of overall activation
level of hidden units in the group. If more hidden units in
the group are active, the overall activation level of the group
is higher. However the products are unbounded and at very
different numerical scales since any hidden unit’s activation
probability (P (hk

j = 1|x)) in a group that is close to 1 will
make the product extremely big. To alleviate this problem,



Nair and Hinton (2009) introduced a temperature parameter
T to reduce scale differences in the products.

There are two major differences between third-order
RBMs and SGRBMs. Firstly, SGRBMs define a different
overall activation level of a group’s hidden units, which is
the euclidean norm of the vector, (P (hj = 1|x))j∈Gk

. Since
this measure is bounded and in the interval (0, |Gk|), it can
be avoided that one group with a too high overall activation
level shields all of other groups. Secondly, as discussed in
the previous section, SGRBMs yields sparsity at both the
group level and the hidden unit level by regularization.

Sparse Group Deep Bolzmann Machines
Salakhutdinov and Hinton (2009) presented an algorithm for
tractable training multilayer Bolzmann machines, in which,
unlike deep belief networks, hidden units will receive top-
down feedback. Unfortunately to keep inference efficient,
there are still no connections within the hidden layer in the
deep Bolzmann machines. We show that the proposed l1/l2
regularizer can also be easily added to DBMs. This leads to
sparse group DBMs which can achieve better discriminative
performances (see the experiment section).

Taking a two-layer Boltzmann machine for example, the
energy function is

E(x, h1, h2) = −xTW 1h1 − xTW 2h2 (16)

For training a sparse group deep Bolzmann machine
(SGDBM), we propose the following optimization problem

max
W 1,W 2

L∑
l=1

logP (x(l))−λ1

K∑
k=1

N1
k (x

(l))−λ2

M∑
m=1

N2
m(x(l))

(17)

N1
k (x

(l)) =

√∑
j∈G1

k

P (h1
j = 1|x(l))2 (18)

N2
m(x(l)) =

√ ∑
j∈G2

m

P (h2
j = 1|x(l))2; (19)

Given observed data the two activation probabilities can not
be computed efficiently. Following Salakhutdinov and Hin-
ton (2009), we used P (h1

j = 1|x(l), h̃2) and P (h2
j = 1|h̃1)

to approximate P (h1
j = 1|x(l)) and P (h2

j = 1|x(l)) where
h̃2 and h̃1 are the corresponding mean-field approximations.

Experiments
Since SGRBMs yields sparsity at the hidden units level, we
firstly applied SGRBMs to model patches of natural im-
ages. We show that SGRBMs are able to learn localized,
oriented, gabor-like features. Then to quantitatively evaluate
the performances of SGRBMs (as generative models), we
applied SGRBMs to the MNIST handwritten digit dataset1
and the OCR English letters dataset2 and reported the av-
erage test log-probabilities. For evaluating the discrimina-
tive performances of SGRBMs, we applied SGRBMs to pre-
tain multilayer feedforward networks on the MNIST dataset

1http://yann.lecun.com/exdb/mnist/.
2http://ai.stanford.edu/˜btaskar/ocr/.

and the OCR English letters dataset. At last we also trained
SGDBMs on these two datasets.

Modeling Patches of Natural Images
The training data used consists of 100, 000 14× 14 patches
randomly extracted from a standard set of 10 512 × 512
whitened images as in (Olshausen and others 1996). We di-
vided all patches into mini-batches, each of which contained
200 patches, and updated the weights after each mini-batch.

Figure 2: Learned features with the SGRBM trained on
patches of natural images. The white lines denote the bound-
aries of the groups.

Figure 3: Learned features with sparse RBM trained on
patches of natural images

We trained a SGRBM with 196 real-valued visible units
and 400 hidden units which are divided into 80 uniform
non-overlapping groups. There are 5 hidden units in each
group. The regularization constant, λ (see Equation 10), is
empirically set to 0.13. The learned features are shown in
Figure 2. For comparison, we also trained a sparse RBM
(Lee, Ekanadham, and Ng 2008) with 400 hidden units. The
learned features are shown in Figure 3. Since hidden units
in a group compete with each other to model pathes, each
hidden unit in the SGRBM is focused on modeling more
subtle patterns contained in training data. As a result, the
features learned with the SGRBM are more localized than
those learned with the sparse RBM.

Modeling Handwritten Digits and OCR English
Letters
The MNIST digit dataset contains 60, 000 training and
10, 000 test 28 × 28 images. We further randomly split the
training set into 50, 000 training and 10, 000 validation im-
ages4. OCR letters dataset contains 32, 152 16 × 8 images.
Following the code5 provided by Larochelle, we split the

3The results we report below were insensitive to the choice of
λ.

4To make the comparison with previous results on the MNIST
dataset fair, once good hyper-parameter values were selected based
on the validation set, all 60,000 training examples were used to
train the final model.

5http://www.cs.toronto.edu/˜larocheh.



Table 1: The estimates of the variational lower bound on the
average test log-probabilities.

Models MNIST OCR letters
RBM CD-1 -113.0 -33.9
SGRBM CD-1 -111.7 -32.7
RBM CD-25 -86.2 -29.0
SGRBM CD-25 -85.3 -28.7

dataset into 32, 152 training, 10, 000 validation and 10, 000
test examples. Both the MNIST training set and the OCR let-
ters training set are divided into mini-batches, each of which
contained 100 images.

We implement Model selection with a grid search over
the learning rate (0.0001, 0.001, 0.01 or 0.1), the number
of hidden units (250, 500, 750 and 1000), the group size
for SGRBMs (5, 10, 20 and 50) and the regularization con-
stant, λ for SGRBMs (0.001, 0.01, 0.1 and 1). We configure
a SGRBMs with 500 hidden units and group size 5 for the
MNIST dataset and a SGRBMs with 1000 hidden units and
group size 5 for the OCR letters dataset. The regularization
constant, λ is set to 0.1 for both of the datasets. We compare
these models to two regular RBMs with 500 and 1000 hid-
den units, respectively. All of these models are trained using
CD with k = 1 and k = 25, respectively.

Although computing the exact partition function of an
RBM is intractable, Salakhutdinov and Murray (2008) pro-
posed an Annealed Importance Sampling based algorithm
to tractably approximate the partition function of an RBM.
Using their method, the estimates of the lower bound on the
average test log-probabilities are given in Table 1. It can be
seen that by adopting the l1/l2 regularization we can learn
better generative models on the MNIST dataset and the OCR
dataset, especially when the models are trained using CD-1.

Due to space reasons, we show only the features of the
SGRBM trained the MNIST dataset in Figure 4. Many fea-
tures in Figure 4 look like different strokes of handwritten
digits.

Figure 4: Learned features of the SGRBM trained on
MNIST dataset. The white lines denote the boundaries of
the groups.

We use Hoyer’s sparseness measure (Hoyer 2004) to fig-
ure out how sparse representations learned by the RBMs
and the SGRBMs. This sparseness measure is in the inter-
val [0, 1] and on a normalized scale. Its value more close
to 1 means that there are more zero components in the vec-
tor. With every trained models, we can compute activation
probabilities of hidden units given the test images. Given
any trained model this leads to new representations of test
data. Due to space reasons, we only report the results of the

MNIST dataset6. The sparseness measures of the representa-
tions under the RBM (CD-1) trained on the MNIST dataset
are in the interval [0.52, 0.73], with an average of 0.64. The
sparseness measures under the SGRBM (CD-1) are in [0.63,
0.80]. The averages are 0.72, respectively. It can be seen
that the SGRBM can learn much more sparser representa-
tions. Figure 5(a) visualizes the activation probabilities of
hidden units, which are computed under the regular RBM
given an image from test set. Given the same image the acti-
vation probabilities computed under the SGRBM are shown
in Figure 5(b).
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Figure 5: (a) Activation probabilities computed under the
regular RBM. The sparseness of the vector is 0.64; (b)
Activation probabilities computed under the SGRBM. The
sparseness is 0.73.

Using SGRBMs to Pretrain Deep Networks
One of the most important applications of RBMs is to use
them as building blocks to pretrain deep networks (Hinton
and Salakhutdinov 2006). We show that SGRBMs can also
be used to initialize deep networks and achieve better perfor-
mances of classification on the MNIST dataset and the OCR
letters dataset.

To make the comparison with the previous result (Hinton
and Salakhutdinov 2006) fair, we use SGRBMs to pretain a
784-500-500-2000 network which has the same architecture
to the deep network described in (Hinton and Salakhutdi-
nov 2006). The group size and λ are selected in the way
described in the previous section and set to 5 and 0.1. After
pretraining, the multilayer network is fine-tuned using Con-
jugate Gradient. Then the network achieves the error rates
of 0.96%. Using regular RBMs pretraining a 784-500-500-
2000 network achieved the error rate of 1.14% (Hinton and
Salakhutdinov 2006). A network with the same architecture
initialized by sparse RBMs gave a much worse error rate of
1.87% (Swersky et al. 2010).

For the OCR letters dataset, we use SGRBMs to pretain
a 128-1000-1000 network. All of hyperparameters are se-
lected in the way described in the previous section. After
fine-tuning, the network achieves the error rates of 9.79%.
Using regular RBMs pretraining a network with the same
architecture achieves the error rate of 11.21%.

Sparse Group Deep Boltzmann Machines
We also train a two layer (500-1000) sparse group Boltz-
mann machine on the MNIST dataset. We used the same hy-

6The results of the OCR letters dataset are similar



perparameters and the same training algorithm as Salakhut-
dinpov adopted in the source code7. The group size and λ
are selected in the way described in the previous section
and set to 10 and 0.1 for both of two layers. The SGDBM
achieves the error rates of 0.84% on the test set, which is, to
our knowledge, the best published result on the permutation-
invariant version of the MNIST task. The deep Boltzmann
machine with the same architecture resulted in the error rate
of 0.95% (Salakhutdinov and Hinton 2009).

For the OCR letters dataset, we train a two layer (2000-
2000) SGDBM. The group size and λ are set to 5 and 0.01
for both of two layers. We used the same hyperparameters
as Larochelle adopted in the code8. The SGDBM achieves
the error rates of 8.08% on the test set. The deep Boltzmann
machine with the same architecture resulted in the error rate
of 8.40% (Salakhutdinov and Larochelle 2010).

Conclusions
In this paper, we introduce l1/l2 regularizer on the activa-
tion probabilities of hidden units in RBMs, which lead to
sparse group RBMs. Empirically we found SGRBMs can
achieve better generative and discriminative performances
than RBMs. At last, we illustrate the regularizer can also be
applied to deep Boltzmann machines and improves discrim-
inative performances of DBMs.
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