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Abstract

ActiveMath is an intelligent e-Learning platform that exhibits a
number of Semantic Web features. Its content knowledge representation
is a semantic XML dialect for mathematics, semantic search is enabled,
some of its components work as a web service and, vice versa, it employs
certain foreign web services, e.g., for diagnostic purposes.
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1 Introduction

ActiveMath was one of the first educational systems that seriously addressed
the Semantic Web – such as semantic representation and metadata – in a re-
alistic e-Learning application. It is around for quite some time now and has
evolved from a prototype to a full-blown platform that is used by an interna-
tional community centred in Germany so far.

ActiveMath has typical intelligent tutoring system’s (ITS) components
such as domain (expert) model, a student model, and pedagogical modules
comprising course generator, tutorial strategies, and feedback generators. They
are organized as a client-server application with additional web-services.

What is rather untypical for traditional ITSs are the advanced features that
make it a Semantic Web application, e.g., truly semantic markup and reuse of
content, semantic search, interoperable content and components, distributed ar-
chitecture, generation of web presentations from the representation of content,
asynchronous event framework, etc. Hence, ActiveMath is also a workbench
for studying benefits of combining ITS and semantic e-Learning technologies
as suggested in [Brooks et al.(2006)]. Different from traditional ITSs, Active-
Math encodes the domain model, i.e., the domain ontology, implicitly in the
content stored in a knowledge base. Because of this encoding and an active
community of authors, the content and thus the ontology/domain model can
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evolve and change over time. Hence, ActiveMath has to take care of those
changes preferably in an automatic way rather than in a constant re-engineering
effort.

In the following, we describe ActiveMath’s relevant design parts including
knowledge representation, architectural issues, communication, role of ontolo-
gies, as well as relevant features of some ActiveMath components among
them web-services. In order to provide a rather self-contained chapter, we
summarize some of ActiveMath’s features which were included more detailed
in [Melis et al.(2006)].

2 Design Principles and Preliminaries

ActiveMath has been designed with web-communication, interoperability, se-
mantic knowledge representation and metadata standards in mind.

2.1 Architecture and Communication

From the beginning, ActiveMath had a client-server architecture [?] as de-
picted in Figure 1. Its components communicate via http requests •EdNote! Paul, George,

true for all
communi-
cation??;
kind of..
there’s always
inside-vm
components...
they are not
http-bound
(e.g., as below,
the search to
the content
store

or use an even more elaborate communication via a mediator or broker as de-
scribed below. An event system (not depicted in Figure 1) enables an asyn-
chroneous communication of components (including external systems) to which
components and external systems ’issue’ event-information and components can
’listen’. For instance, the exercise subsystem or an external player can send in-
formation about the student’s performance in an exercise and the student model
may listen and use this information.

The figure shows the server of the ActiveMath platform in the middle and
its web-service communications with external servers at the left-hand-side.

Note that the employed ontologies are not incuded in Figure 1 because they
are not handled as main components but their information is implicit in the rep-
resentation of content (stored in content repositories) and in external content
dictionaries of OpenMath, which are introduced below. However, the course gen-
erator uses an explicit stable ontology of instructional objects, oio, as explained
below. Several content knowledge bases can be accessed by the course generator
by way of mapping their ontologies of instructional objects to the course gener-
ator’s oio [Kärger et al.(2006)]. A domain ontology mapping is not (yet) used.
The external diagnostic systems communicate with ActiveMath via a broker
and exchange information in OpenMath as detailed below. The search compo-
nent communicates with the content base(s) via direct java calls and initiates
an indexing upfront.

ActiveMath’s course(ware) generator is called Paigos [Ullrich(2008)], and
it uses information about learning objects, the learner and his/her learning goals
to generate an adapted sequence of learning objects that supports the learner
in achieving his goals. Hence it communicates with the student model and
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Figure 1: Coarse architecture of ActiveMath with services

the content base(s). Paigos is based on an extensive model of expert teach-
ing knowledge – about 300 “rules” define how to assemble different types of
courses. Paigos can function as a service and be accessed by other learning
environments. Section 2.2.1 describes what is required of the knowledge rep-
resentation to enable such a service, and Section 3.3 describes the service in
detail.

The student model provides information to the other components via an
interface. The presentation subsystem (multiply presented in Figure 1 to allow
for a clearer depiction) takes IDs, fetches XML lerning objects (LOs) from the
content base(s) and generates the actual presentations which the client browser
will present. The actual generation uses presentation information from the user
profile/request, the course generator, exercise system, and the system settings.
This information communication is not depicted in the architecture figure to
keep it clear.

2.2 Semantic Knowledge Representation

The knowledge representation in ActiveMath is based on the OMDoc standard
for mathematical documents [Kohlhase(2006)]. It defines fine-grained learn-
ing objects (LOs) connected to each other by relations and annotated with
metadata. In ActiveMath, we differentiate between two types of OMDoc LOs:
(1) so-called concepts (also called ’knowledge components’ in ITS publications)
that are the main elements of the ontology such as symbols representing ab-
stract mathematical concepts, definitions of these concepts, axioms, theorems
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and proofs; (2) satellite elements such as example, exercises and types of texts
that elaborate on, explain, or train the related concepts.

The OMDoc format itself uses OpenMath [OpenMath] as embedded format for
representing mathematical formulaæ. OpenMath is a well-established standard
for representing mathematical formulaæ and, indeed, a semantic representa-
tion. Its main goal is the interoperability of formulaæ and, thus, of the systems
which process them. It defines the mathematics symbols’ semantics by the us-
age of so-called content dictionaries [OpenMath], which contain agreed upon
symbol declarations providing a hook, to which symbol occurrences point to
when using an OpenMath symbol (OMS) element. This enables a semantic eval-
uation and interoperability of mathematical formulæ. The symbol declarations
are complemented by a description in regular English and by formal proper-
ties which are mathematical statements that should hold for the symbol to be
interoperable. Mathematical documents contain not only formulaæ but also
several types of text, links, and potentially multimedia parts. Therefore, OMDoc
extends OpenMath: all textual fragments can occur in multiple languages and
be interleaved with formulæ; structural elements such as definitions, examples,
exercises, etc. are added – as usual in XML – including text etc.; and refer-
ence/grouping constructs, such as omgroup and theory.

•EdNote! The grouping construct theory models formal mathematical Georgi, The-
orie nur
erlautern, falls
theory spaeter
vorkommt,
sonst nicht,
weil ver-
wirrend!

theories and allows for a rich management of namespace in the usage of imports.
OpenMath content dictionaries serve as reference for symbols rather than for

document elements. Referencing the content dictionay or grouping, to which a
symbols belongs adds semantical information to mathematical expressions, e.g.,
whether + is an operation for real numbers or for matrices. This provides ad-
ditional information for the expressions’ semantic evaluation by external math-
ematical reasoning services and for the diagnosis of user input.

•EdNote! Georgi, das
folgende habe
ich gestrichen,
weil es ablenkt.
es koennte
bestenfalls
als footnote
durchgehen

2.2.1 Ontologies

As sketched above, most ontological information is represented in the content,
rather than explicitly in separate ontologies. This design decision goes back to
ActiveMath’s flavor of an open platform to which (evolving) content can be
added/modified by an authors’ community. This implies frequent changes of the
ontologies except the rather stable oio. For a particular instance of Active-
Math we are currently testing an approach in which the domain ontology is a
separate OWL-formalization to which the content and its metadata will refer
to.

ActiveMath uses two different ontologies, a domain ontology and a ped-
agogical one. The domain ontology contains abstract concepts (symbols) and
their definitions, theorems, axioms as concepts and describes the subject do-
main from a mathematical point of view, e.g., relations between concepts that
indicate the equivalence of two definitions.

The pedagogical ontological information is represented in our extension of
OMDoc. It includes relations such as prerequisite-for •EdNote! and proper- Georgi, ?
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ties of LOs such as difficulty as, e.g., defined in the LOM standard. Moreover,
the pedagogical information declares the type of a learning objects according
to its instructional function and the oio ontology. This is independent of the
specific (mathematical) subject domain.

We had to develop the additional ontology oio because existing learning
object metadata standards such as LOM [ieee LTSC (2002)] failed to describe
learning objects sufficiently precise for intelligent components to integrate them
automatically into the students’ learning work flow. For instance, LOM’s learning-
ResourceType mixes pedagogical and technical or presentation information:
while its values Graph, Slide and Table describe the format of a resource,
other values such as Exercise, Simulation and Experiment cover the instruc-
tional type. They represent different dimensions, hence need to be separated
for an improved decision making. Furthermore, several instructional objects are
not covered by LOM (e. g., definition, example). As a result, LOM fails to
represent the instructional types sufficiently precise to allow for automatic usage
of learning objects, in particular, if it involves complex pedagogical knowledge
necessary for effective learning support. For instance, LOM has no easy way to
determine to what extent a resource annotated with Graph can be used as an
example.

The then novel ontology of instructional objects (oio) [Ullrich(2005)] con-
tains this previously missing information. Its classes are shown in Figure 2. The
root class of the ontology is instructionalObject. Central to the ontology is
the distinction between the classes fundamental and auxiliary. The class
fundamental subsumes instructional objects that describe the central pieces of
domain knowledge (concepts). Auxiliary elements include instructional objects
which contain additional information about the fundamentals as well as training
and learning experience. The oio enables several of ActiveMath’s advanced
pedagogical features amd it allows to define the course generation knowledge
such that it is independent of the specific domain.

Applications of the ontology in areas other than course generation were
investigated in the European Network of Excellence Kaleidoscope and published
in [Merceron et al.(2004)]. Moreover, the oio was used for a revised version
of the ALOCoM ontology [Knight et al.(2006)], in the e-Learning platform e-
aula [Sancho et al.(2005)], and in the CampusContent project of the Distant
University Hagen [Krämer(2005)].

The oio ontology facilitates the process of making third-party repositories
available to the course generator which can assemble a course from resources
of different repositories. The oio helps to provide the course generator’s func-
tionality as a service to systems that register their repositories (described in
Section 3.3). In [Rostanin et al.(2006)] we showed that it can also be applied to
completely different domains (e.g., for work flow embedded e-Learning).

2.2.2 Metadata

Metadata used by ActiveMath can be divided in three main categories: gen-
eral administrative metadata, mathematical metadata, and pedagogical meta-
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Figure 2: Overview of the Ontology of Instructional Objects

data.
For general annotations of LOs such as title of the item, date of its

creation, name(s) of author(s), copyright information and so on Active-
Math uses the standard Dublin Core metadata element set. The Rights ele-
ment/values used for specifying copyright is replaced by the standard Creative
Commons metadata.

Mathematical metadata define mathematical types of LOs such as defini-
tion, theorem, exercise and relations between them. There are several kinds of
mathematical relations between LOs. The most frequently used are: (1) the
domain prerequisite relation that indicates that a concept is needed in order
to introduce the current concept and (2) the for relation indicating that a LO
relates to a concept to define, explain, illustrate, introduce, prove, or train a
concept.1 •EdNote! alle: ist das

FOR wirklich
mathema-
tisch?? oder
niocht doch
pedagogical?
Paul: it’s both

Pedagogical metadata include some metadata imported from LOM, such
as learning context, difficulty, field, and abstractness. They define
parameters of ’auxiliary’ LOs that help the components of ActiveMath to act
intelligently and to model the student appropriately.

Competency metadata are assigned to ’auxiliary’ LOs. Following the ap-
proach of Anderson and Krathwohl [Anderson et al.(2001)], a competency is
represented as a pair of a cognitive process and one or more domain concepts.

1Typically, a cognitive task analysis should be the basis for introducing the for for exercises.
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This metadata defines a skill the LO addresses. ActiveMath can relate to
several competency schemes, such as Bloom’s Taxonomy of Learning Goal Lev-
els, the PISA competencies [OECD(2004)], and an extension of Anderson and
Krathwohl’s scheme described in [Melis et al.(2008)].

•EdNote! Georgi: re-
lation to
standard tech-
nology such
as SCORM,
PAPI, IMS-
LD!! see
PL’s input
commented

3 Web-Services and Components of ActiveMath

All components and communications in Figure 1 use the decribed knowledge
representation, most importantly, the exercise subsystem with its diagnosis, the
course generator, and the student model.

3.1 Diagnostic Services

Diagnosis is a basis for generating feedback in interactive exercises, which is an
efficient alternative to authoring (limited) feedback.

ActiveMath has a generic framework for distributed diagnostic services.
This framework implements interfaces for connecting different kinds of remote
services using existing protocols supported by web applications. ActiveMath
can query two kinds of services for diagnosing the student’s input: (generic)
computer algebra systems (CASs) and domain reasoner services which rely on
formalizations of human-like reasoning and possibly frequently used incorrect
rules in a specific mathematical domains.

The semantic OpenMath markup for mathematical formulaæ and a generic
format for queries to the diagnostic services support the interoperability of dif-
ferent CASs and reasoners (see below). ActiveMath can communicate with
CAS and domain reasoner services which have so-called phrasebooks translat-
ing OpenMath formulaæ into the actual syntax of the service and vice versa
translating computation result back to OpenMath for ActiveMath. Due to the
fact, that the OpenMath format represents semantics of mathematical formulaæ,
such phrasebooks can always be implemented nd already exist for a number of
CAS, e.g., for Maple [Maple], Mathematica [Mathematica], Maxima [Maxima],
Yacas [2], WIRIS [1].

Currently, ActiveMath integrates and communicates with the following
CASs: YACAS, Maxima, and WIRIS. Figure 3 shows different ways of connect-
ing to CASs that we realized in our framework, which are dependent on a CAS’s
implementation: the WIRIS server is connected to ActiveMath via XML-
RPC and has an internal OpenMath phrasebook. YACAS has native support
for OpenMath and is communicating directly via an internal OpenMath protocol.
The Maxima server communicates via WDSL and the queries are piped through
an external phrasebook. Currently, the most frequently used CAS connected
to ActiveMath is YACAS, since it is modular. easily extensible, and open
source. New domains can be attached to YACAS by extending domains that
are represented as modules in form of scripts that can be attached as parameters
to the YACAS process or loaded into the running system on fly.
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CASs are very efficient and fast in providing diagnoses needed for the gen-
eration of a flag feedback (correct/incorrect feedback) as well as for a correct
solution of a given problem.

CAS services are also used for creating so-called randomized exercises, in
which the complete solution of an interactive exercise is parametrized. For every
admissible instantiation of the parameters a concrete exercise and its solution
can be generated. The Randomizer of the exercise subsystem of ActiveMath
generates exercises by instantiating the parameters with randomly chosen values
from defined ranges over sets (of numbers or functions) and intervals. Since the
solution of each step of a problem is represented as a mathematical expression,
for each randomized exercise the student’s answers can be diagnosed as correct
or incorrect by a CAS. For more information about the Randomizer component
see [Dudev, González Palomo(2007)].

More diagnoses can be obtained when a domain reasoner is available for the
mathematical domain(s) of the exercise, e.g., errors in a soution, the student’s
solution strategy, irrelevant steps. A domain reasoner can respond to queries
which are used to generate hints for the learner such as

• next step

• correct input for current step

• number of steps to final solution, etc.

An example of a domain reasoner service is SLOPERT [Zinn(2006)], which
encapsulates expert and buggy human-like rules for the (mathematical) domain
of symbolic differentiation. This service maintains an internal state and, thus,
can trace the (partial9 solution of the student and diagnose his/her errors. An-
other domain reasoner connected to ActiveMath is MathCoach [Grabowski et al.(2005)],
which is, however, stateless and cannot trace a student’s solution. A series of do-
main reasoners is being developed at Open Universiteit Netherlands [Heeren at al.(2008)]
using Haskell They can respond to queries similar to those of ActiveMath (see
section 3.1.2.

Currently, ongoing work is implementing rule-based domain reasoners in the
form of YACAS modules, that could provide more sophisticated stepwise diag-
nosis and are answering ActiveMath specific queries described in the section
3.1.2.

3.1.1 Service Query Architecture

ActiveMath implements a novel service architecture for the diagnosis of stu-
dent’s actions in mathematical problem solving. A broker architecture dis-
tributes queries to external diagnosis services as shown in Figure 3. The Query
Broker accesses those services that are registered for the (mathematical) domain
needed for the diagnosis. This domain is recognized by analyzing the included
expressions and OpenMath symbols. •EdNote! For instance, a domain rea- Georgi, stimmt

das?soner for symbolic differentiation is only queried for (sub-)problems in symbolic
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Figure 3: Diagnosis framework architecture

differentiation. The subscribed mathematical services themselves can also send
a query back to the Query Broker in case a subexpression belongs to another
domain and has to be analyzed by another reasoner. For example, a domain
reasoner for symbolic differentiation can send a query back to the broker if it
needs to simplify an arithmetic expression. The Query Broker passes this new
query to a CAS or an arithmetic domain reasoner.

Few other systems try to make mathematical services provers accessible
through the web. Examples of such are MONET services [MONET(2003)],
or MathServe [Zimmer, Autexier(2006)].

3.1.2 Queries

In ActiveMath generic queries are used to access any diagnosis service. The
queries include a number of dimensions, one of them is context, a novel construct.

A context defines (sub-)sets of rules and functions that a domain reasoner
or a CAS is allowed to use for a response to the query. The background for
this restriction is that the student’s learning situation determines which ’rules’
and functions he/she is supposed to employ. That is, usually a student input
such as Solve(expression) (where Solve is a CAS command) wont be accepted
even though it is semantically equivalent with a correct result. For instance,
if the task of the student is to differentiate the function f(x) = (x + 1) · x.
If the student has not yet learned the product rule, a reasonable and correct
next step would be an arithmetic transformation that removes brackets. Using
the product rule would not be expected from the student. In this case, the

9



evaluation of the student’s answer needs to exclude the product rule from the
context but include the arithmetic context.

In order to formalize queries used for diagnosis we defined a format for
queries including :

• action of the query with the commands explained below

• (list of) input expressions to be evaluated or compared with each other
and depending on the action.

• context of action identifying the set of applicable rules, e.g., arithmetic,
differentiation, logic

• number of iterations defines how many atomic steps the domain reasoner
should perform in the given context.

In the following, e, e1, e2, are OpenMath expressions, C is a context of a
query, N is the number of iterations. A solution path is a list of results of
consecutive rule applications, which are annotated with rule identifiers.

Currently the following queries to diagnostic services are used in Active-
Math:

• query(getResults, e, C, N) - returns the list of final nodes of all paths
of length N starting at e in the context C

• query(compare, e1,e2, C, N) - returns true if there exists a path of the
length N from e1 to e2 in the context C, false otherwise

• query(getRules, e, C) - returns the list of the identifiers of expert rules
applicable to e in context C

• query(getBuggyRules, e1, e2, C, N) - returns the list of the identifiers of
all buggy rules that belong to a path from e1 to e2 in the context C. This
query is possible for those domain reasoners that can reason with (typical)
buggy rules and some CASs, which can be extended to do so.

• query(getUserSolutionPaths, e1, e2, C, N) - returns the list of all paths
of length N from e1 to e2 in the context C

• query(getExpertSolutionPaths, e, C, N) - returns the list of all paths
of length N starting at e in the context C. In this query C can consist of
expert rules only.

• query(getNumberOfStepsLeft, e, C) - returns the number of steps left to
reach the final node of the shortest expert solution path in context C

• query(getRelevance, e1, e2, C) - returns ’true’ if the expression e2 is
closer than e1 to the actual solution in the context C,

10



For example, a query for information about the next two steps for computing
derivative of the function f(x) = (x+1) ·x using only arithmetic simplifications
and differentiation rules except for a product rule looks as follows:

query(getResults, (x + 1) · x, C, 2),

where C is the composite context formed by concatenating arithmetical context
and differential rules without product rule.

3.2 Student Model

In most educational content, the metadata related to competencies refer to one
of (the standard) taxonomies. For instance, the PISA specification for math-
ematics ’competencies’ includes think, argue, model, solve, represent,
language, tools. Hence, to achieve interoperability a student model needs to
be able to adopt different frameworks for competencies/skills which are used in
educational contents/systems. ActiveMath’s semantics-aware student model
(SLM) is flexible enough to act upon contents using different competency frame-
works. Currently, it can choose between the competency taxonomies used in
PISA [OECD(2004)], Bloom’s taxonomy [Bloom(1956)], and the mmore recent
two-dimensional taxonomies as described in [Anderson et al.(2001), Melis et al.(2008)].

Moreover, a system that relies on evolving content produced by a commu-
nity of authors ActiveMath needs to adapt to (frequent) modifications of the
domain model as well. Therefore, the structure of the SLM is dynamically
generated from the metadata represented in the content representation.

Becasue of the focus of the paper, we will mainly describe the build-process
of SLM rather than go into detail of the updating of competency-values through
Item Response Theory and Transferable Belief Model [Faulhaber and Melis(2008)].
Note, however, that metadata such as the difficulty and competency-level of the
recent exercise influences the updating process: difficulty provides a parameter
of IRT.

The generation of the student model is data-driven. The structure of SLM
consists of nodes, each for a single concept to estimate competencies for. SLM
automatically creates a node for each concept k included in the current learning
content of a student, e.g., the concept ’definition of fraction’ or the rule ’addition
of fractions with unlike denominators’. See Figure 4. SLM stores each associ-
ated competency value m(k, p) within the node, where a competency is defined
as a pair (k, p), in which p is a cognitive process, such as apply an algorithm or
model a mathematical problem that is applied to k. For one-dimensional compe-
tency frameworks such as PISA or Bloom’s SLM translates the competencies to
the two-dimensional framework. Inter-node relations are dynamically extracted
from the content metadata, most importantly the prerequisite relationship,
which determines propagation in SLM. See Figure 4 for an illustration.

The student model communicates its results to ActiveMath’s event system
that every other component can listen.
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Figure 4: Structure of the student model and its propagation links

3.3 Course Generation Service

The course generator of ActiveMath (Paigos) is designed as an component
whose services can be accessed by other learning environments, too. This re-
quires that Paigos and those learning environments share a common under-
standing of the type of courses that are to be generated as described in Sec-
tion 3.3.1. Then, Section 3.3.2 describes the communication between Paigos
and its clients.

3.3.1 Representations

Pedagogically sensible course generation requires reasoning about learning sce-
narios. In traditional course generation systems, scenarios consist only of learn-
ing objects, which represent the target content that is to be learned. Such
an approach ignores that also selection and sequencing of LOs depend on the
course’s purpose. For instance, LOs in a course for preparing an exam may
differ from LOs in a guided tour.

Furthermore, in the Web of today, where systems are no longer standalone
but embedded in the eco-system of the Web, the representation of the scenarios
should enable communication about and exchange of scenarios between differ-
ent systems and services. Thus, the representation needs to contain sufficient
semantic information to enable such functionality.

Van Marcke [Van Marcke(1998)] introduced the concept of an instructional
tasks, which represents an activity that can be accomplished during the learning
process. This helps to define scenario more accurately since both, the content
and the instructional task are essential aspects of a learning goal. Therefore,
we define scenarios as a combination of the two dimensions content and task.

A scenario is a tuple t = (p, L), where p is an identifier of the instructional
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Identifier Description
discover Discover and understand concepts in

depth
rehearse Address weak points
trainSet Increase mastery of a set of concepts by

training
guidedTour Detailed information, including prerequi-

sites
trainWithSingleExercice Increase mastery using a single exercise
illustrate Improve understanding by a sequence of

examples
illustrateWithSingleExample Improve understanding using a single ex-

ample

Table 1: A selection of tasks used in Paigos

task and L is a list of learning object identifiers. L specifies the course’s target
concepts, and p influences the structure of the course and the learning objects
selected.

For instance, the instructional task to discover and understand content in
depth is called discover. Let’s assume that def slope and def diff are the
identifiers of the learning objects that contain the definition of the mathemat-
ical concept “average slope of a function” and “definition of the differential
quotient”, respectively. The scenario for a learner who wants to discover and
understand these two concepts is t = (discover, (def slope, def diff)). Ta-
ble 1 contains a selection of tasks that Paigos can process, currently.

Tasks can be internal tasks that are of potential interest for system com-
ponents. Public tasks. need to be described sufficiently precise to enable a
communication between different components, services, and systems. Their de-
scription contains the following information:

• the identifier of the task

• the number of concepts the task can be applied to. A task can either be
applied to a single concept (cardinality 1) or multiple concepts (cardinality
n)

• the type of learning object (as defined in the oio) that the task can be
applied to

• the type of course to expect as a result. Possible values are either course
in case a complete course is generated or section in case a single section is
returned. Even in case the course generator selects only a single learning
object, the resource is included in a section.

• an optional element condition that is evaluated in order to determine
whether a task can be achieved. An example is ActiveMath’s item menu
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<tasks>

<task>

<pedObj id="trainWithSingleExercise!"/>

<contentIDs cardinality="1"/>

<applicableOn type="fundamental"/>

<result type="section"/>

<condition>(class Exercise)(relation isFor ?c)

(property hasLearningContext ?learningContext)

</condition>

<description>

<text xml:lang="en">Train the concept.</text>

<text xml:lang="de">\"Ube den Inhalt.</text>

</description>

</task>

...

</tasks>

Figure 5: A public task representation

for adding content. Its entries are displayed only if the corresponding tasks
can be achieved. E.g., if there are no examples available for def slope,
then the task (illustrate, (def slope)) cannot be achieved, so it wont
be displayed.

• a concise description of the purpose that is used for display in menus.
•EdNote! Carsten: wo-

fuer ist das?
•EdNote! Figure 5 displays the task trainWithSingleExercise!. It is habe nur eine

task gelassen,
da wir Platz
sparen mssen,
erica

applicable to a single educational resource of the type fundamental and returns
a result in case the condition holds.

3.3.2 Course Generation Interfaces and Communication

Paigos provides two main Web interfaces, the core interface contains the meth-
ods for the course generation and the interface that allows a client to register
at Paigos. The core interface consists of the following methods:

1. The method getTaskDefinitions is used to retrieve the pedagogical
tasks which the course generator can process.

2. The method generateCourse starts the course generation on a given
task. The client can make information about the learner available
either through a pointer to his/her student model or by a list of
property-value pairs. .

In order to achieve interoperability, the Web interface returns an ims Man-
ifest, consisting of references to LOs. The internal interface returns a table-
of-contents like structure whose leaves are references or a special kind of tasks
called dynamic tasks which are instatiated only later.

The interface for repository registration consists of the following methods:
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2:generateMapping():RepAPI :Mediator1:getMetadataOntology():LMS�Client
5:getOntologyMapping()4:registerRepository()3:registerRepository()

Figure 6: Sequence diagram of repository registration

1. The method getMetadataOntology informs the client about the meta-
data structure used in Paigos. It returns the ontology of instructional
objects.

2. The method registerRepository registers the repository that the
client wants the course generator to use. The client has to provide the
name and the location (url) of the repository. Additional parameters
include the ontology that describes the metadata structure used in the
repository and the mapping of the oio onto the repository ontology.

3. The method unregisterRepository cancels the registration of a repos-
itory.

The interface ResourceQuery is used to query the repository about properties
of learning objects. The interface consists of the following methods:

1. queryClass returns the classes a specified resource belongs to
2. queryRelation returns the set of identifiers of those learning objects

the given resource is related to via the specified relation
3. queryProperty returns the set of property-value pairs the specified

resource has.
The LearnerPropertyAPI makes the learners’ properties accessible to Pai-

gos in case the client has a learner model and wants the course generator to use
it. In the current version of Paigos, this interface is not yet implemented. It
would require a mediator architecture similar to the one used in ActiveMath
for repository integration [Kärger et al.(2006)].
The result of the course generation is a structured sequence of learning objects
represented in an ims Manifest[IMS(2003)]. Since the result does not contain
the resources but only references, it is not an ims cp.

A repository is registered in the following way (for a sequence diagram
illustrating the registration, see Figure 6): in a first step, the client (LMS-
Client in the figure) retrieves the metadata ontology used in Paigos. The
ontology is then used to generate a mapping between the oio and the ontol-
ogy representing the client metadata (Step 2) (the currently existing mappings
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were manually authored). Then, the repository is registered using the method
registerRepository (Step 3). The repository is added to the list of avail-
able repositories and made known to the mediator (a component of Paigos
that allows the integration of third-party repositories) (Step 4). Subsequently,
the mediator fetches the ontology mapping from the client and automatically
generates a wrapper for querying the contentAPI of the client.

A client starts the course generation using the service method generate-
Course. In a first step, Paigos checks whether the task is valid. If so, the course
is generated. During the generation process, Paigos sends queries to the media-
tor, which passes the queries to the repository. After the course is generated, the
omgroup (the element OMDoc uses for grouping elements) generated by Paigos
is transformed into an ims Manifest and sent to the client.

4 Presentation and Management of Mathemat-
ical Expressions

For different users, mathematical formulæ can be presented in different formats
(for print or browser) and forms – depending on the user’s (cultural) context
and preferences. Moreover, the diversity of the rendering forms also builds on
the diversity of the notations in mathematical practice, e.g., the fact that sin2 x
is written without bracket while sin2(x+y) is written with brackets even though
the mathematical symbol is the same.

Most solutions for browser rendering mathematics focus on a single pre-
sentation language which can be rendered in multiple browsers. For instance,
JS-math2 or Wikipedia’s texvc3 use a subset of LATEX to allow for authoring of
mathematical formulæ with presentation markup, i.e., markup usable only for
rendering.

This does not, however, solve the presentation problem for student interac-
tions and search as needed in an e-Learning system. In order not to confuse the
student, to avoid cognitive overload, and to support smooth interaction with
content and tools the presentation of mathematical expressions should be the
same in all tools of his/her learning experience. For instance, when the learner
uses a curve plotter, the lexicon/search tool, the input editor, a CAS service,
he/she should view the same presentation of a symbol in any application. At
first, this seems to be trivial but it is not:

1. interactions occur in interactive exercises for which the student’s input
is evaluated. Interactions also occur with (GUIs of) interactive tools
such as computer algebra systems or function plotter. In this case,
the semantic and computable nature of the mathematical object is
required for consistency. Hence, the presentation in any of the tools
cannot be hard coded but needs to be generated. The generation of a

2JSmath is a javascript library that renders TeX within the browser, see http://www.math.

union.edu/~dpvc/jsMath/
3texvc is an add-on to mediawiki explained at http://en.wikipedia.org/wiki/Texvc.
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presentation is also required because of the need of cultural adaptation
which requires to use culture-specific presentations for a number of
symbols and expressions.

2. search for mathematical formulæ needs to be independent of the actual
rendering and should exclude mismatches such as x+y2 when the user
queried for x2.

ActiveMath responds to the need to render formulæ consistently in the
content as well as in interactions and to search semantically by processing
formulæ in OpenMath as the semantic basis for presentation and management
(search, input, copy and paste, etc.) of mathematical expressions.

4.1 Adaptive Rendering of Formulæ

Following the common web practice, all interactions in ActiveMath occur
in a web-browser and applets. The browser’s interactions with the web-server
involve the generation of a presentation code (refer to Figure 1). As much as
possible, ActiveMath uses its generic presentation architecture to produce
the rendering of mathematical formulæ based on their semantic representation.
Rendering of formulæ is part of the presentation process of ActiveMath which
aims at delivering browser code of the content. This delivery depends on the
context and preferences of the user which includes the following dimensions:

1. the format of delivery, which is mostly a choice of the user (currently
HtML +css, TEX/PDF, and xHtML+MathML are supported)

2. the language of the user, which impacts the notations
3. the educational context and field of study
4. the course that is currently delivered.
The delivery converts OMDoc items into chunks of browser code based on the

format, language, and notation. XSLT transformations are used to this end.
The XSLT transformations are partially generated by a set of notations which
associates OpenMath prototypes (expressions with variables as place holders)
to a presentation template. The resulting adapted rendering of mathematical
content is in line with a user’s cultural customs while at the same time it keeps
its meaning through the underlying OpenMath expressions.

4.2 Input of Mathematical Formulæ

An interaction for which OpenMath is crucial too, is the input of formulæ. In
ActiveMath mathematical formulæ can be input in three ways:

Input Editor: The input editor of ActiveMath is palette-based and can
be used in different platforms. It is easily accessible to a novice user for the
input of symbols. It is implemented as a Java applet which internally edits
an OpenMath expression. Its palettes are configurable by a skilled author. Its
rules for transforming OpenMath expressions to a rendering code employ internal
rules and notations central to ActiveMath – thus achieving consistency for a
student.
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Textfields: Because not all students want to work with such an input editor
ActiveMath enables linear input syntax as well. Its syntax resembles that of
the Maple and its output is OpenMath.

Linear Input for Authors: In the authoring environment mathematical
formulæ are input with a linear syntax (OQMath), which is configurable by
notation files.

These methods can be complemented by a copy-and-paste facility: a feature
of ActiveMath’s presentation is a reference to a URL at which the OpenMath
term is available. The paste of the URL representing this term is interpreted
by the input editor and other recipients (linear input, function plotter, etc.) as
a request to fetch and insert the OpenMath term.

5 Conclusion

The article described several Semantic Web features of the e-Learning platform
ActiveMath. The backbone of many of those features is the semantic knowl-
edge representation for mathematics, OMDoc, and its ActiveMath metadata
extensions. This representation is processed by a number of components of the
platform whose architecture and communication is conveyed at a high level.

We explain relevant features of web services and components used for adap-
tive course generation, for the diagnosis of student input in exercises, as well as
the presentation and management of mathematical expressions.

5.1 Future Work

The oio ontology has been adopted and extended by other groups. We hope
this will also happen to the interoperable services which are currently used by
ActiveMath. Currently, the ActiveMath group is in the process of reusing
learning material originally devised for other learning environments. For this
purpose, however, mathematical semantics and metadata have to be added to
the content.

Currently, ActiveMath can exchange basic student profile information
with other applications such as Moodle but does not (yet) exchange detailed
student model information. This is a future goal.

Paigos was successfully used by the two third-party systems MathCoach
(a learning tool for statistics [Grabowski et al.(2005)]), and Teal (work flow
embedded e-learning at the workplace, [Rostanin et al.(2006)]). Future work
on Paigos is necessary to realize a mediator-like architecture for the generic
integration of/communication with student models of other applications.

The search tool of ActiveMath has almost been neglected in this article
even though it searches semantically by matching formulæ and their OpenMath
trees and its search for LOs can integrate metadata. Its match of OpenMath
trees is exact, i.e., no equivalent formulation is returned yet. That is, for x + y
only x + y would be returned but not y + x. Normalization is a first step to
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cope with various equivalent encodings. Future work will deal with more fuzzy
search.
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Coach und LaplaceSkript: Ein programmierbarer interaktiver Mathematiktutor
mit XML-basierter Skriptsprache. In Klaus P. Jantke, Klaus-Peter Fähnrich, and
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