
WHAT IS POOR MAN’S EYE TRACKING GOOD FOR?

Carsten Ullrich
DFKI GmbH

Stuhlsatzenhausweg 3
D-66123 Saarbrücken,

Germany
+49 681 302 5370
cullrich@dfki.de

Dieter Wallach
Digital Media Department

University of Applied
Sciences

Kaiserslautern, Germany
wallach@ergosign.de

Erica Melis
DFKI GmbH

Stuhlsatzenhausweg 3
D-66123 Saarbrücken,

Germany
+49 681 302 4629

melis@dfki.de

ABSTRACT In this paper, we describe a new methodology
for tracking a user’s areas of interest on a computer screen.
In contrast to cost- and analysis-intense eye-tracking studies,
our approach operates on a software-only basis that requires
no additional hardware. In an exploratory study, we
compared our software-based tracker with hardware eye
trackers with respect to the types of recorded data.
Interestingly, our software-based «poor man's» eye tracker
allows the collection of data that would pose several
problems for hardware eye tracker. In this paper, we describe
a study in which we compared whether both approaches
yield similar data. A first evaluation of our results clearly
indicates high correlations between the software eye tracker
and the hardware system.

Keywords
Usability Testing, Eye Tracking, Empirical Methods,
Toolkits

1. INTRODUCTION
In his article “What is Eye Tracking Good for?” Schroeder
[5] enumerated the “Can” and “Can’t” of hardware eye
trackers. At the German Research Center of Artificial
Intelligence in Saarbrücken we have developed a software-
based (poor man’s) eye tracker that overcomes most of the
“Can’t”s of hardware eye trackers that Schroeder discussed,
while still offering almost the same advantages. DFKeye
was initially developed for the use in the eLearning
environment ACTIVEMATH [4], however we recently
started to explore its scope and applicability as a substitute
for hardware eye trackers with arbitrary interfaces.

Although we know of two similar approaches to DFKeye,
their application presuppose a somewhat limited and
artificial experimental setup since they either need
participants to perform significant and cognitive demanding

extra effort [3] or they rely on the user’s compliance to
specific experimental instructions [6].

2. DFKEYE: A POOR MAN’S EYE TRACKER
Hardware eye trackers use infrared light reflections on the
user’s cornea to track the fixations of participants. In this
paper, we argue that trailing a user’s area of interest can be
closely approximated by tracking the user’s mouse
movement in a proper setup [1], [2].

When using our DFKeye, the screen is divided into several
regions. Text areas, Figures, information containers or
arbitrary other user interface regions located within these
regions are hidden from the user by blurring their content.
To make the respective region’s content visible, the user
focuses it by moving the mouse pointer into this area. As
Byrne et al. [1] discuss, there is evidence that users tend to
move the mouse pointers to the regions where they are
gazing at. Whenever a user enters or leave a certain region,
DFKEye records the respective start and end times. From a
user’s point of view, the visibility of a region is removed
after a parameterizable time slot and its content is hidden
again. To regain focus, the user needs to move the mouse
again.

3. W HAT IS P OOR M A N ’S E YE TRACKING
GOOD FOR?
There are a several reliably functioning hardware eye-trackers
on the market — so why can there be a need for a poor
man’s eye tracker such as DFKeye? Besides the
disadvantages of the enormous costs for buying and
maintaining a hardware eye tracker, we also found
restrictions when applying it in research. On a general level,
Schroeder [5] enumerates the types of data that can be
gathered using hardware eye trackers. What about a software-
based system like DFKEye? According to Schroeder,
hardware-based eye-trackers:

® Can tell whether users are even looking at the
screen. Since DFKEye is not actually tracking
gazes, but focuses on the user’s behavior, it cannot
tell whether a user is just passively sitting in front
of the screen, or focusing any areas on it. However,
as soon as a user wants to use information on the
screen, her mouse movements will indicate her
areas of interest. In this sense, although DFKEye
cannot tell whether the user is not looking at the

screen, we can certainly tell when she is and which
information she is requesting.

® Tell whether users are reading or scanning. Even
though we cannot distinguish between reading and
scanning on the grain size of words, we can gather
evidence for reading vs. scanning at the region
level by inspecting the focus times of the different
regions. Short, frequently varying foci might
indicate whether a user is scanning for some item,
whereas long, stable foci suggest that the user is
reading. Since the regions on the screen are only
blurred, but not blackened, the user is still able to
see the overall layout of screen and has thus
enough visual cues for finding relevant areas on the
screen.

® Compare user scan patterns. This analysis requires
the comparison of single user data, which both the
hardware- and the software-based eye trackers yield.

® Learn the relative intensity of a user’s attention to
various parts of an interface. Information about
the distribution of a user’s attention to different
screen areas, directly arises from the division of the
screen into distinct regions. For each region
DFKEye registers when and how long the user
looked at it.

The comparison above indicates that our behavior-based
approach provides a functionality that allows to address
research questions that previously required expensive
hardware eye-trackers. It is not our intention to propose
DFKEye as a substitute for hardware-based system,
however, we found several questions that are not answered
by the use of hardware eye trackers. DFKEye can, for
example:

® Let you know whether users actually see something
on the screen. A hardware eye tracker cannot
distinguish between users studying the region they
are looking at and users who simply stare at them,
not perceiving the respective content. However,
since DFKEye blurrs the content of a region after a
certain period of time, a. participant who wants to
continue studying the region, needs to move the
mouse in order to make the region’s content visible
again.

® Prove that users didn’t see something. Peripheral
vision cannot be tracked by a hardware eye tracker.
In a setting that uses DFKEye, however, regions
that are not focused cannot be perceived by a user
since they are blurred and their content therefore
not accessible.

® Test everybody. Hardware eye trackers are difficult
to calibrate, to keep calibrated, and are sometimes
not usable with some participants at all, whereas
DFKEye requires users only being able to move a
mouse. In our opinion, this amounts to be the
major advantage of DFKEye: Even when testing
completely cooperative participants, the calibration

procedure often takes almost as long as the
experiment the eye tracker is actually used for.
Depending on the type of hardware eye tracker
(head-mounted vs. remote), participants need to be
instructed not to move their heads too much. This
requirement implies a rather uncomfortable
situation for the participants and restricts the
duration of an experiment that makes use of eye
tracking. In contrast, DFKEye does neither need a
calibration procedure, nor specific instruction
regarding head movement, and can thus even be
applied remotely via the Web. With only a few
exceptions, most eye tracking studies tested only a
very small number of participants, or relied on
single case studies — due to its effortless
applicability DFKEye promises to conduct studies
with a broad number of participants.

DFKeye can be easily adapted to a broad range of
experimental requirements: Three different variants of hiding
the elements within a region have been implemented:

® cover (covers the respective completely),

® fade (changes the font colour to approximately
match the background colour),

® and zoom (changes the font size to miniscule).

DFKEye allows the adjustment of the delay between
entering a region with the mouse pointer and unhiding it, as
well as setting the time after which the region is hidden
again when the mouse pointer is not moved.

DFKeye is realized as a Javascript application that uses
onMouseOver/on-MouseOut event handlers on HTML DIV
elements to catch the mouse movements. Time information
is send to a servlet (java server application) immediately
after a region is blurred. All data is stored in an XML
format and can thus be easily transformed to the required
input format easily using XSL-stylesheets. DFKEye is
implemented in strict conformance to the W3C standards,
and is usable in all W3C-compliant browsers (Mozilla,
Netscape6) and in IE5. Currently, we are preparing a
DFKEye-kit that can be easily integrated into existing web-
based systems.

3.1 Comparing Both Methodologies
As argued in the last paragraph, there are obviously several
advantages associated with the use of DFKEye in
comparison to a hardware-based tracker. However, the
central question is whether DFKEye and a real eye tracker in
fact yield similar data patterns when applied in a study. To
evaluate this question, we conducted a study targeted to
analyze the relative strength of visual cues, using a hardware
eye tracker and DFKEye. Although data analysis is still
underway, our initial results are encouraging: To allow for a
direct comparison of the data gathered, we contrasted the
data on the level of screen regions which were defined for
the hardware-based tracker (SMI) and for DFKEye. The
correlation coefficient of the data gathered with the two
systems fall within the range between .73 and .94 and thus

indicate that the hardware-based eye tracker and DFKEye
obviously yielded similar results in this study.

In our opinion, DFKEye offers an easy-to-use, inexpensive
and reliable alternative to hardware eye tracking. Since
DFKEye can easily be integrated into existing web-based
applications such as eLearning frameworks [4], it allows the
use of evidence for a user’s regions of interest in domains
where hardware-based eye trackers would not be applicable.

4. ACKNOWLEDGEMENTS
We thank Michael Dietrich for his work for the
implementation of various versions of DFKEye and
Thorsten Moritz for conducting the evaluation study.

5. REFERENCES
[1] Byrne, Michael D., Anderson, John R., Douglass, Scott

& Matessa, Michael: Eye Tracking the Visual Search of
Click-Down Menus. Proceedings of the SIGCHI
conference on Human factors in computing systems: the
CHI is the limit, p. 402-409, 1999.

[2] Chen, M. C., Anderson, J. R., and Sohn, M. H.: What
can a mouse cursor tell us more? Correlation of
eye/mouse movements on web browsing. Proceedings of
Computer Human Interaction (CHI) 2001, p. 280-281,
2001.

[3] Egner, Itti and Scheier. Comparing attention models
with different types of behavior data, Investigative
Ophthalmology and Visual Science (Proc. ARVO 2000),
Vol. 41, No. 4, p. S39

[4] Melis, E., Büdenbender, J.,Andres, E.,Frischauf, A.,
Goguadze, G., Libbrecht, P., Pollet, M., and Ullrich, C.
ACTIVEMATH: A generic and adaptive web-based
learning environment. Artificial Intelligence and
Education, 12(4), 2001.

[5] Schroeder, Will: What is eye-tracking good for?
http://www.uie.com/eyetrack2.htm

[6] Wilhelm, T., Yom, W., and Berger, S. Site-Covering
eine innovative Methode zur Erfassung der
Informationsaufnahme und des Entscheidungsverhaltens
auf Webseiten, Planung & Analyse , April 2002

