
Early Experiences with Responsive Open Learning
Environments

Martin Wolpers, Martin Friedrich
(Fraunhofer FIT, Sankt Augustin, Germany, {martin.wolpers,

martin.friedrich}@fit.fraunhofer.de)

Ruimin Shen, Carsten Ullrich
(Shanghai Jiao Tong University, Shanghai, China

{rmshen, ullrich_c}@sjtu.edu.cn)

Ralf Klamma, Dominik Renzel
(RWTH Aachen, Aachen, Germany,

{klamma, renzel}@dbis.rwth-aachen.de)

Abstract: Responsive open learning environments (ROLEs) are characterized through their
openness for new configurations, new contents and new users, and through their responsiveness
to learners' activities in respect to learning goals. Openness specifically encompasses the ability
to include new learning material and new learning services. These can be combined either in a
static fashion or dynamically, therefore allowing learners to create their own learning
environments. Consequently, throughout the lifetime of a ROLE, new configurations will be
created by learners, usually adapted to their needs, requirements and ideas. In this paper, we
will describe first experiences using ROLEs for a course on foreign language learning at the
Shanghai Jiao Tong University in China. Results of our trials are two-fold: on the one hand,
widget, container and other enabling technologies are insufficiently mature to allow large-scale
deployment. On the other hand, the results are encouraging as students which learn how to use
ROLEs clearly benefit from their use.

Keywords: Personalized learning environment, Responsive open learning environment,
language learning, inter-widget communication

1 Introduction

Responsive open learning environments (ROLEs) are characterized through their
openness for new configurations, contents and users and through their responsiveness
to learners' activities in respect to learning goals. Openness specifically encompasses
the ability to include new learning material and services. These can be combined
either in a static fashion or dynamically, therefore allowing learners to create their
own learning environments. Consequently, throughout the lifetime of a ROLE, new
configurations will be created by a learner, usually adapted to her needs, requirements
and ideas. In addition, ROLEs respond to the actions the learners carry out within
them. Such actions can be as simple as downloading a suggested reading and as
complex as participating and interacting with others learners in a complete course
about a certain topic. Responsiveness then requires the system to respond to these

activities, for example by incorporating previously downloaded documents into the
suggestions for new readings (as kind of a recommender system) or by offering new
services that better suits the needs of learners. For example, a learner might be
suggested to use a simulation and conceptual mapping tool to understand a certain
problem instead of reading theoretical literature as was provided before.
In the context of the research project ROLE (Responsive Open Learning
Environments), the infrastructure is developed to enable the creation of individual
open responsive learning environments. The ROLE project aims to enable learners to
assemble and re-assemble their own learning environments which become personal
learning environments (PLE) in due course. This is of particular relevance in the
critical lifelong learning transition phases when inhomogeneous groups of learners are
treated in a one-size-fits-all way since there is no way to respond to their individual
strengths and weaknesses. Even worse, in such transition phases learners are typically
required to become accustomed to working with an entirely new virtual learning
environment (VLE). The ROLE project will enable the learner to easily construct and
maintain her own PLE consisting of a mix of preferred learning tools, learning
services, resources, etc. In this way the level of self-control and responsibility of
learners will be strengthened, which is seen as a key motivation aspect and success
factor of self-paced, formally instructed as well as informal/social learning. Especially
in the ROLE testbed at Shanghai Jiao Ton University (SJTU) students are mostly
adult learners who have limited knowledge of Web tools. The students often do not
know or have difficulties using specific tools. Thus the personalization of their
learning environment such as assembling tools they are familiar with is very
important for them.

This paper describes a scenario regarding ROLE specific features and describes
the technical implementation and evaluation in Chapter 2. The prototype supports
language learning through a web based environment where learners use several
intercommunicating widgets to learn a language. Chapter 3 describes first experiences
using ROLE in a specific testbed. The results and insights gained from the application
of the prototype in the testbed are summarized in Chapter 4.

2 Prototype description

To visualize the potential of the ROLE project and gather experience in using the
technologies required within the project we built a first PLE prototype based upon a
common language learning scenario derived from the SJTU testbed which is based on
established open-standard web technologies. The resulting prototype helps to refine
specifications and requirements and furthermore to validate the interoperability of the
proposed technologies used within the ROLE project. During the development
process of the ROLE prototype for language learning, we collected a set of valuable
however negative experiences with the technical development.

2.1 Scenario

In our SJTU language learning scenario we assume that a learner wants to improve
her business English skills. She wants to reach this goal by reading texts related to her
working field and by learning the relevant vocabulary. Thus she assembles her PLE

by adding learning tools (integrated via widget technology) which are related to the
language learning task and fit best to her preferences. She decides to add three
different widgets, a Language Resource Browser widget, a Translator widget and a
Vocabulary Trainer widget, as shown in Figure 1.

Figure 1: Set of language learning widgets

The Language Resource Browser is used to display resources of different media types
such as texts, videos or audio files. Furthermore, it offers the possibility to trigger
different actions on words which the learner is missing. For example the learner can
select missing vocabularies and perform a specific action. Since the learner decided to
additionally use the Translator and Vocabulary Trainer widget she can look up the
selected vocabulary using the Translator widget or send them to the Vocabulary
Trainer widget which gathers a list of words she considers to be important in the
future. The learner repeats this procedure during the next days with different
resources and later decides to test herself by memorizing those words gathered by the
Vocabulary Trainer widget. Every time she has problems with a word she can look up
its context, such as the sentence where the word occurred, which helps her
memorizing the word.

2.2 Technical Implementation

As described in the scenario we have chosen a widget-based approach to enable the
learner assembling her own personal learning environment. This approach makes the
development of new widgets independent from specific learning platforms and
previous widget implementations.

To achieve responsiveness and openness within ROLE we focussed on
intercommunicating widgets which further decreases the configuration complexity of
widgets for the end users. In a first step we used a Gadget pubsub channel
[OpenSocial, 10] as a kind of message bus which enables widgets to publish or

subscribe events using a unified message format. Each time a user action is performed
inside a widget the event is published by broadcasting a message containing all
information about the user action. This message is received by all other widgets
connected to the same pubsub channel. The subscribing widgets then receive those
messages and decide whether they react to the event or not. This means that,
regarding the language learning scenario, the Translator widget is able to translate
words selected by the learner inside the Language Resource Browser widget. By
pressing the "Send to Translator" button a message containing the selected word is
broadcasted and reacted to by the Translator widget by looking up the word in a
dictionary and displaying its translation. Thus, all widgets have the opportunity to
receive published events and choose whether and how to react depending on the event
type, message type, message content, etc. At the current stage, inter-widget
communication is limited to widgets in the same local browser instance only. To be
more general in future, as a long term goal we aim to realize arbitrary forms of real-
time communication between learners, remote inter-widget communication,
interoperable data exchange, event broadcasting, etc., by employing the Extensible
Messaging and Presence Protocol (XMPP) [Saint-Andre, 09] discussed in more detail
in section 2.3.

To host and render the widgets we decided to use the Apache Shindig container
[Shindig, 10] which is the reference implementation of OpenSocial [OpenSocial, 10].
OpenSocial provides a common API which enables applications to use social features
across multiple websites and further includes a specification for widgets. By using
Apache Shindig as container to host and render the widgets, we are able to integrate
them into already existing learning management systems and open virtual learning
systems including the pubsub feature. Unfortunately, this prerequisite is not valid for
most publicly available containers such as iGoogle. A detailed evaluation of further
considered widget container technologies such as SocialSite is done in section 2.3.

For further responsiveness of the learning environment in future we aim to
provide self-evaluation and recommendation mechanisms. Therefore we developed a
widget which monitors the user’s behaviour within her learning environment. Each
user interaction inside a single widget triggering a publish event is captured to
monitor the users behaviour over time. Thus, the monitoring widget receives every
published message, transforms it into Contextualized Attention Metadata (CAM)
[Wolpers, 07] and stores it in a central database. Having this information enables the
generation of recommendations based on collaborative filtering algorithms [Linden,
03] and the provision of self evaluation mechanisms. For recommendations e.g. the
current usage history of the learner can be taken into account and compared with the
usage histories of other users. If other users own a usage history similar to the learner
one can recommend those documents they have accessed after the current document
of the learner. To provide self evaluation functionality CAM can be used to visualize
and summarize the actions performed by the user per day, week or month and
compare own with other users' activities. Further the CAM Information can be
enhanced with manual annotations such as an evaluation of learning success which
makes it possible to show the user's learning progress similar to [Wolpers, 09].

2.3 Development-related experiences

For the development of the first ROLE prototype we pursued a collaborative
distributed development process on a rather small scale among consortium partners.
The longer-term goal is to gain experience for a large-scale roll-out to open source
and commercial developer communities outside the consortium, which is one of the
main ROLE objectives. As we aim to build a web-based environment, in particular
using widget technologies, we first scouted for a development environment suitable
for hosting and rendering the sets of widgets and services contributed by the partners
in a distributed manner. The goal was to organize our process according to the
following policy:

• Every developing partner maintains a local development environment
• One partner maintains an additional integration environment
• All local development environments and the integration environment are

equivalent

Especially the equivalence required in the last policy rule was not fulfilled for reasons
discussed in the following. Although there exist multiple Open Source solutions for
widget containers already, the biggest challenge was their immaturity, especially
regarding inter-widget communication, one of the main requirements for our language
learning PLE (cf. Section 2.1). During the development process we tested three
different development environments, mainly consisting of container technologies for
OpenSocial compliant widgets (resp. gadgets in OpenSocial terminology):

1. SocialSite (based on Shindig within Glassfish) [SocialSite, 10]
2. Apache Shindig [Shindig, 10]
3. OSDE (Eclipse Plugin with integrated Shindig) [OSDE, 10]

With all of the above systems we encountered at least one of the following problems:

• Lack of Forward Incompatibility
• Client Browser Dependence
• Server Platform Dependence
• Inaccessible Bugs in Generated Code
• Lack of Developer Support
• Incompatibility with External Libraries
• Instability of Draft Standard Specifications
• Missing/Changing Libraries for inter-widget Communication

The first problem was related to container installation, in particular with SocialSite.
First, the current SocialSite distribution was restricted to specific, already outdated
versions of Glassfish and Shindig, and thus is not forward compatible - an essential
property, when working with experimental systems likely to evolve in future. Given
the diversity of devices and platforms used by the different developing partners, we
quickly had to find out that platform and browser independence was not given at all.
Although both Shindig and Glassfish are Java-based, and all partners were using the

same installer version, some partner installations worked as expected, while others
exhibited unexplainable container side errors. Another issue was browser
incompatibility. Even with a working container, some browsers did not render
widgets correctly, while others exhibited no problem at all. This problem is highly
likely to be related to different implementations of JavaScript engines implemented in
browsers. Another essential problem was the inaccessibility of bugs in JavaScript
code. In many cases, problems occurred outside the source code under developer
control. The reason was a malfunction in the code production performed by the
container itself to render the widgets. Furthermore, error messages were cryptic and
incomprehensible and thus did not provide any hint to the original location of an
error. In conjunction with the above problems we had to experience that developer
support by the SocialSite team was not available at all. At the time of writing this
document, it seems quite obvious, that SocialSite is dead. After the initial
experiments with SocialSite, we communicated possible alternatives. The alternative
usage of Apache Shindig instead of SocialSite was also not successful for all ROLE
developers at that point in time. However, due to the currently ongoing incubation
process at Apache, we can expect to receive support and more mature versions from
the Shindig team in future. The OpenSocial Development Environment (OSDE),
which also uses a built-in Shindig test server, was considered as a helpful tool with
respect to the development of single widgets, but proved to be impractical, when it
comes to the development of multiple intercommunicating widgets. Further problems
were related to the incompatibility of external JavaScript libraries with the Widget
container, which resulted in strange code rewriting effects or cross-domain issues.
With special regard to the publish/subscribe based inter-widget communication
approach we are pursuing in ROLE, we experienced that at the current time Shindig is
in a transition phase of changing from the pubsub feature included in the Google
gadget API to the pubsub mechanism included in Open Ajax Alliance Hub 2.0
[OpenAjaxAlliance, 10]. Regarding all of the above issues, we can state that the
collaborative distributed development process of a PLE was challenging due to the
lack of a stable and reliable development environment.

With the long-term goal in mind to create a class of ROLE widgets supporting
arbitrary forms of real-time communication between learners, remote inter-widget
communication, interoperable data/metadata exchange, event broadcasting, etc., we
put a special focus on the Extensible Messaging and Presence Protocol (XMPP)
[Saint-Andre, 09]. Due to its rich set of built-in properties and features, its set of
official XMPP Extension Protocols (XEPs) and the variety of application use cases in
ROLE, we explored the protocol in conjunction with widget technologies and
JavaScript libraries. Although there exist quite a number of XMPP libraries for
JavaScript, we learned that many of them are still insufficiently mature for the
realization of our goals and definitely need improvement. In particular, we
experimented with a selection of libraries listed on the official XMPP website. A
comparison of these libraries is presented in Table 1.

Library Connection
Technique

Code/Documentation
Maturity

UI Element
Support

Supported
Features & XEPs

dojox.xmpp
[Dojo, 10]

XMPP over
BOSH ok/weak yes (basic)

Core: IM,
Presence, Roster
XEP-0004: Data
Forms
XEP-0030:
Service Discovery
XEP-0085: Chat
State Notifications
XEP-0206: XMPP
over BOSH

xmpp4js
[XMPP4JS,
10]

XMPP over
BOSH ok/ok no

Core: IM,
Presence, Roster
XEP-0004: Data
Forms
XEP-0030:
Service
Discovery
XEP-0049: Private
XML Storage
XEP-0077: In-
Band Registration
XEP-0085: Chat
State
Notifications
XEP-0100:
Gateway
Interaction
XEP-0206: XMPP
over BOSH

strophe.js
[Strophe, 10]

XMPP over
BOSH

ok/weak no XEP-0206: XMPP
over BOSH

js.io [JS.IO,
10]

(CSP) Comet
Session
Protocol

weak/weak no unknown

Table 1 Comparison of JavaScript Library Support for XMPP

Probably the most important notion was that libraries exhibited different levels of
code and documentation maturity and different sets of core and extension protocol
features implemented. The minimum level of functionality realized by all of the above
libraries is the emulation of persistent, stateful, two-way connections to an XMPP
server using comet techniques such as Bidirectional-streams Over Synchronous HTTP

(BOSH) [Paterson, 08], often in conjunction with additional libraries for XMPP XML
stanza construction and parsing. The next level of functionality was the
implementation of XMPP core services, i.e. instant messaging, presence, and roster
lists, which were only realized by dojox.xmpp and xmpp4js. Functionality beyond
XMPP core services often only include very basic XEPs, e.g. for service discovery,
server ping, data forms, etc., but does in all cases not include the implementation of
central XEPs supporting powerful communication techniques such as multiuser chat,
publish/subscribe, etc. Although code and documentation quality as well as the set of
supported XEPs in xmpp4j seemed superior, we decided to start the experimental
implementation of further XMPP XEPs based on dojox.xmpp, because it provides
cross domain solutions, is integrated into the well-established dojo toolkit, and is
designed to make use of the dojo widget framework for the provision of custom
XMPP-powered UI elements. Currently, the XMPP Multiuser Chat XEP-0045 [Saint-
Andre, 10] is under development in conjunction with a pubsub enabled XMPP
multiuser chat gadget. As future work, further central XEPs will be implemented and
evaluated in a whole class of XMPP-enabled Widgets.

Drawing the conclusions from our experiences, we can state that the technologies
we experimented with were insufficiently mature for the deployment of a stable
integrated prototype ROLE PLE assembled from a set of innovative tools realized
using a combination of different bleeding-edge Web technologies. We finally
managed to deploy our prototype in Graaasp [Bogdanov, 10] in a rather stable
version, but still with a lot of open issues to be tackled in later development stages of
the ROLE project. The evaluation of our prototype in one of the ROLE testbeds is
described in the next section.

3 The Shanghai Jiao University Testbed

ROLE is based on the vision that responsive open learning environments will
accompany learners throughout their learning career, from during formal education to
learning at the workplace. Several testbeds enable the ROLE project to collect
requirements in various settings. One major test bed takes place at the School of
Continuing Education (SOCE) at Shanghai Jiao Tong University. SOCE is the online
branch of SJTU. Online colleges/universities such as SOCE play a particular role in
the Chinese education system. Foreseeing the enormous demand for higher education,
the Chinese government decided in 1998 to establish a number of online institutions
that were open to those students who did not pass the university entrance exams (in
2007, 10.1 million students applied for 5.67 million places) [People's Daily Online,
2007]. The ROLE SOCE testbed enables us to learn about PLEs from the viewpoints
of “average” users, that is learners who are not highly technically literate, who have
limited time due to jobs and families.

3.1 Test-bed Description

The students on the SOCE (the situation is similar at the other online institutions) are
mostly adult learners who have a job. They study two to three years for associate or
bachelor degree courses. The courses are similar to regular university courses with the

difference that teaching takes place in the evenings and weekends. Each class lasts for
three hours. Our blended classrooms are based on the Standard Natural Classroom
model [Shen, 08], in which students can either attend the classes in person or attend
via the live Web broadcast. Lectures can also be downloaded for asynchronous
watching. During the lectures, online students can communicate with the teacher via
short messages. The SOCE software system records, encodes and broadcasts each
lecture in real-time. Target devices/destinations include desktop/laptop PC via ADSL
broadband connections, IPTV devices via the Shanghai Educational IPTV channel,
universities in western China via two satellite connections and mobile devices via
GPRS. SOCE produces about 6GB of content every day. The current SOCE learning
management system supports student-student communication via forums. Teachers
can create exercises/homework to be completed by the students.

Some of the gaps in the current learning processes are representative for most
Chinese educational settings. Students are degree/certificate oriented: the primary
goal is to receive a formal acknowledgment of the mastery of the study subject, not
the mastery of the subject. Group work is hard to perform as it is seldomly performed
at school. In consequence, the practical application of learned knowledge is difficult
for Chinese students. For instance, in language learning, the students have extreme
difficulties communicating with native speakers. They are insecure, shy, and make
frequent mistakes. Furthermore, in our lectures we over and over make the experience
that the students do not know, have difficulties, or simply do not use existing tools
such as online dictionaries, pronunciation tools or microblogging sites. Reasons
given include lack of time, interest and motivation. In ROLE, we experiment with
different scenarios to address these problems.

We experimented with an Open Learning Environment and a variety of tools
(video conferencing, micro-blogging, translation services, text-to-speech, etc) over
two semesters in the courses English Listening and Speaking, German I/II, French I/II
and Introduction to Computer Science. About 50-100 students attended the language
learning courses, and about 1.200 students took part in the Computer Science class.
From our experience we knew that the students at SOCE have limited knowledge
about Web tools (RSS is virtually unknown), only limited time at their disposal, and
limited technical expertise. Furthermore, in the Confucian culture of China learning is
still very teacher-centered [Zhang, 07], and students are not used to actively
contribute within a class. We therefore decided to build PLEs according to the
suggestions of the teachers and make these pre-built PLEs accessible to the students.
The teachers presented the PLEs in class, and showed example usages. In order to
encourage usage, the students were assigned homework that required using the PLEs.
We then observed the students' usage of the PLEs and collected feedback from the
teachers and students by interviews and questionnaires.

The prototype described in Section 2 was not finalized at the time we started our
experiments at the SJTU testbed. Therefore, we used a slightly different version based
on the portal Liferay. While we did not offer advanced features such as inter-widget
communication, the basic functionality was the same and therefore enabled us to
collect information about the usage of an OLE in a higher education context.

3.2 Testbed related experiences

Here, we will briefly report on our experiences with using the PLE in the SJTU
testbed for language learning support. The integration of an OLE into a course is a
complex task that does not work like clockwork, but requires careful introduction,
integration into the classroom and a clearly perceived value by the students.

For the students it is not sufficient to present a single example of how to use the
OLE in class. In itself, this will not enable and motivate students sufficiently to work
with the embedded tools. In our experiments only a minority of students (about 10%)
actually made use of the services and did the associated tasks (however, even
"regular" homework to be done via the school LMS is only done by about 50% of the
students). We hope to improve these figures by increasing the incentive to use the
PLEs. Measures will include extra points for the final grade, but also better
communication of the value of a PLE. In particular, students need to understand how
the tasks and services work which can help them to achieve their goals. Each OLE
usage needs to be broken down into the individual steps. For instance, the task of
doing a spoken self-introduction can involve the steps of writing the introduction in
the native tongue, translating it, polishing it, using a text-to-speech tool to listen to it,
a recording to practice one’s own pronunciation, and finally recording and publishing
it. As a teacher, demonstrating this whole sequence only once or twice overtaxes the
student. Each single step needs to be shown and done by the students several times.
The single steps as well as the combination of services should be assigned as
homework, giving the students an initiative for practicing. Breaking down the usage
of an OLE helps students understand how to use it. Even more important is that the
students understand why they should use a PLE. Students need to see the value of
performing additional tasks which are not directly related to language learning.

For western students the access to the internet is almost as common as watching
TV. Applying a web based PLE to other countries requires taking into account
country-specific restrictions. For example, as SJTU is located in China the access to
quite a large number of Web sites including social networks such as Twitter,
Facebook and Friendfeed as well as many Web services is blocked. Furthermore,
many institutions such as schools or companies restrict the access of sites deemed to
be inappropriate for their scholars.

Furthermore, we experienced new directions for technical research which should
be taken into account for the development of the next ROLE prototypes. This includes
the necessity to create accounts for some services which require a login or the
necessity to have a single sign on feature since logging in several times leads to
frustration of the students. Finally, even though logging data was collected in the
SJTU testbed, students did not raise privacy concerns. On the contrary, repeatedly,
students uttered concerns that their contributions in the employed tools might not be
noticed by the teacher.

4 Conclusions and Outlook
Responsive Open Learning Environments create enormous challenges on the psycho-
pedagogical as well as on the technical side. Some of the challenges were sketched in
this paper. The ROLE project has chosen a spiral “organic” development and
deployment process to cope with the challenges mentioned above. We started with

very small scale projects only covering partial requirements of the five testbeds of
ROLE. This was necessary to understand the different development cultures among
the developers at the different ROLE sites and also the language of the end users
stating their requirements - an experience that will surely help for the larger roll-out
planned. Indeed, beside those challenges the interplay between end users of personal
learning environments and developers of enabling technologies and products is
crucial. It is not only a problem that the current generation of developers do not
recognize the time horizons covered in the development of personal learning
environments, thus making industrial scale standards deployment inevitable, but also
open source developers and company developers do not understand each other. At the
moment, flexibility and openness is more on the side of the company developers.

In the near future, the development process is widened to cover more than one
testbed. This is due to the necessary learning experience for developers that results
developed in the context of one scenario are not necessarily transferable to another
scenario. As the ROLE project is targeting the transitions of learning, the future
scenarios involve learners' shifts of interests and learning goals during the scenarios
like leaving the university with some degree of self-regulated learning and entering a
company where learning goals are only valid in the light of the company's strategy.

Acknowledgements

The research leading to these results has received funding from the European
Community's Seventh Framework Programme (FP7/2007-2013) under grant
agreement no 231396 (ROLE project).

References

[Achmed, 99] Ahmed, M., Karmouch, A., Abu-Hakima S.: Key Frame Extraction and Indexing
for Multimedia Databases, Vision Interface 1999, Trois-Rivières, Canada, 19-21 May 1999.

[Bogdanov, 10] Bogdanov, E., Salzmann, C., El Helou, S., Sire, S., and Gillet, D.: Graaasp: A
Web 2.0 Research Platform for Contextual Recommendation with Aggregated Data. In ACM
Conference on Human Factors in Computing Systems (HCI) - Work-in-Progress, 2010.

[Chakrabarti, 99] Chakrabarti, K., Mehrotra, S.: The Hybrid Tree: An Index Structure for High
Dimensional Feature Spaces, In Proc. Int. Conf. on Data Engineering, February 1999, 440-447
http://citeseer.nj.nec.com/chakrabarti99hybrid.html.

[Cocoon, 02] Cocoon XML publishing framework, 2002, http://xml.apache.org/cocoon/.

[Dojo, 10] Dojo Toolkit. Unbeatable JavaScript Tools. http://www.dojotoolkit.org/. Last visit
March 2010.

[Glassfish, 10] Glassfish Open Source Application Server. https://glassfish.dev.java.net/. Last
visit March 2010.

[Hunter, 00] Hunter, J.: Proposal for the Integration of DublinCore and MPEG-7, 2000.

[JS.IO, 10] js.io. Real-time Web Applications. http://js.io/. Last visit March 2010.

[Linden, 03] Linden, G., Smith, B., York, J.: Amazon.com Recommendations - Item-to-Item
Collaborative Filtering, IEEE Internet Computing 7 (1), 2003

[OpenAjaxAlliance, 10] OpenAjax Hub 2.0 Specification.
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification. Last visit March
2010.

[OpenSocial, 10] OpenSocial. A common Web API for social applications.
http://code.google.com/apis/opensocial/. Last visit January 2010.

[OSDE, 10] OpenSocial Development Environment (OSDE). An IDE development tool for
OpenSocial applications. http://code.google.com/p/opensocial-development-environment/. Last
visit March 2010.

[Paterson, 08] Paterson, I., Saint-Andre, P.: XEP-0206: XMPP Over BOSH. Draft
Specification. October, 2008. http://xmpp.org/extensions/xep-0206.html. Last visit March
2010.

[People’s Daily Online, 07] People's Daily Online: More than 9.5 million Chinese compete in
world's largest examination. 2007:
http://english.peopledaily.com.cn/200706/07/eng20070607_381831.html. Last visit November
2007

[Saint-Andre, 09] Saint-Andre, P., Smith, K., and Tronçon, R.: XMPP: The Definitive Guide -
Building Real-Time Applications with Jabber Technologies. O'Reilly Media. April 2009.

[Saint-Andre, 10] Saint-Andre, P.: XEP-0045: Multi-User Chat. Draft Specification. January
2010. http://xmpp.org/extensions/xep-0045.html. Last visit March 2010.

[Shen, 08] Shen, L., Shen, "The Pervasive Learning Platform of a Shanghai Online College - A
Large-Scale Test-Bed for Hybrid Learning Hybrid Learning and Education", In R. Fong, J.;
Kwan, R. & Wang, F. L. (ed.), First International Conference, ICHL 2008, Hong Kong, China,
August 13-15, 2008, Proceedings, Springer, 2008, 5169, 178-189

[Strophe, 10] Strophe. A family of libraries for writing XMPP clients.
http://code.stanziq.com/strophe/. Last visit March 2010.

[Shindig, 10] Apache Shindig. OpenSocial container reference implementation.
http://incubator.apache.org/shindig/. Last visit January 2010.

[SocialSite, 10] Project SocialSite. https://socialsite.dev.java.net/. Last visit March 2010.

[Wolpers, 07] M. Wolpers, J. Najjar, K. Verbert, and E. Duval, „Tracking Actual Usage: the
Attention Metadata Approach,” in Educational Technology & Society, vol. 10, no. 3, pp. 106-
121, 2007.

[Wolpers, 09] Wolpers, M., Memmel, M., Giretti, A.: Metadata in Architecture Education -
First Evaluation Results of the MACE System, In Proceedings of the 4th European Conference
on Technology Enhanced Learning: learning in the Synergy of Multiple Disciplines, 2009

[XMPP4JS, 10] Xmpp4Js. An XMPP client library written in pure Javascript.
http://xmpp4js.sourceforge.net/. Last visit March 2010.

[Zhang, 07] Zhang, J. A cultural look at information and communication technologies in
Eastern education, In Educational Technology Research and Development, 2007, 55, 301-314

http://english.peopledaily.com.cn/200706/07/eng20070607_381831.html�

